Eigenvalue ratios for the regular Sturm-Liouville system

被引:14
作者
Huang, YL
Law, CK
机构
关键词
regular Sturm-Liouville system; Neumann boundary conditions; eigenvalue ratio; modified Prufer substitution;
D O I
10.1090/S0002-9939-96-03396-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the method of Ashbaugh-Benguria in Comm. Math. Phys. 124 (1989), 403-415; J. Differential Equations 103 (1993), 205-219, we prove an upper estimate of the arbitrary eigenvalue ratio (mu(m)/mu(n)) for the regular Sturm-Liouville system. This upper estimate is sharp for Neumann boundary conditions. We also discuss the sign of mu(1) and include an elementary proof of a useful trigonometric inequality first given in the aforementioned articles.
引用
收藏
页码:1427 / 1436
页数:10
相关论文
共 4 条
[1]   BEST CONSTANT FOR THE RATIO OF THE 1ST 2 EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH POSITIVE POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (03) :598-599
[2]   OPTIMAL BOUNDS FOR RATIOS OF EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH DIRICHLET BOUNDARY-CONDITIONS AND POSITIVE POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 124 (03) :403-415
[3]   EIGENVALUE RATIOS FOR STURM-LIOUVILLE OPERATORS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (01) :205-219
[4]  
Birkhoff G., 1989, ORDINARY DIFFERENTIA