Image-and-Spatial Transformer Networks for Structure-Guided Image Registration

被引:54
作者
Lee, Matthew C. H. [1 ,2 ]
Oktay, Ozan [1 ,2 ]
Schuh, Andreas [1 ,2 ]
Schaap, Michiel [1 ,2 ]
Glocker, Ben [1 ,2 ]
机构
[1] HeartFlow, Redwood City, CA 94063 USA
[2] Imperial Coll London, Biomed Image Anal Grp, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
关键词
D O I
10.1007/978-3-030-32245-8_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image registration with deep neural networks has become an active field of research and exciting avenue for a long standing problem in medical imaging. The goal is to learn a complex function that maps the appearance of input image pairs to parameters of a spatial transformation in order to align corresponding anatomical structures. We argue and show that the current direct, non-iterative approaches are sub-optimal, in particular if we seek accurate alignment of Structures-of-Interest (SoI). Information about SoI is often available at training time, for example, in form of segmentations or landmarks. We introduce a novel, generic framework, Image-and-Spatial Transformer Networks (ISTNs), to leverage SoI information allowing us to learn new image representations that are optimised for the downstream registration task. Thanks to these representations we can employ a test-specific, iterative refinement over the transformation parameters which yields highly accurate registration even with very limited training data. Performance is demonstrated on pairwise 3D brain registration and illustrative synthetic data.
引用
收藏
页码:337 / 345
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 2018, ARXIV180609907
[2]  
[Anonymous], 2015, P 2015 C NEURAL INFO
[3]  
Balakrishnan G., 2019, IEEE T MED IMAGING
[4]   A deep learning framework for unsupervised affine and deformable image registration [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Sokooti, Hessam ;
Staring, Marius ;
Isgum, Ivana .
MEDICAL IMAGE ANALYSIS, 2019, 52 :128-143
[5]   BIRNet: Brain image registration using dual-supervised fully convolutional networks [J].
Fan, Jingfan ;
Cao, Xiaohuan ;
Yap, Pew-Thian ;
Shen, Dinggang .
MEDICAL IMAGE ANALYSIS, 2019, 54 :193-206
[6]   Weakly-supervised convolutional neural networks for multimodal image registration [J].
Hu, Yipeng ;
Modat, Marc ;
Gibson, Eli ;
Li, Wenqi ;
Ghavamia, Nooshin ;
Bonmati, Ester ;
Wang, Guotai ;
Bandula, Steven ;
Moore, Caroline M. ;
Emberton, Mark ;
Ourselin, Sebastien ;
Noble, J. Alison ;
Barratt, Dean C. ;
Vercauteren, Tom .
MEDICAL IMAGE ANALYSIS, 2018, 49 :1-13
[7]  
Rohe Marc-Michel, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10433, P266, DOI 10.1007/978-3-319-66182-7_31
[8]  
Sokooti Hessam, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10433, P232, DOI 10.1007/978-3-319-66182-7_27
[9]   Deformable Medical Image Registration: A Survey [J].
Sotiras, Aristeidis ;
Davatzikos, Christos ;
Paragios, Nikos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (07) :1153-1190
[10]   Quicksilver: Fast predictive image registration - A deep learning approach [J].
Yang, Xiao ;
Kwitt, Roland ;
Styner, Martin ;
Niethammer, Marc .
NEUROIMAGE, 2017, 158 :378-396