NONNEGATIVE SOLUTIONS FOR INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS

被引:2
作者
De Paiva, Francisco Odair [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Positive solution; indefinite sublinear nonlinearity; concave-convex nonlinearity; CONVEX NONLINEARITIES; LOCAL SUPERLINEARITY; DIRICHLET PROBLEMS; POSITIVE SOLUTIONS; MULTIPLICITY; EQUATIONS; CONCAVE;
D O I
10.1142/S0219199712500216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem -Delta u = lambda u + g(x, u) in Omega u = 0 on partial derivative Omega, where Omega is a bounded domain of R-N, lambda is an element of R and g(x, u) is a Caratheodory function. The obtained results apply to the following classes of nonlinearities: a(x)u(q) + b(x)u(p) and c(x)(1 + u)(p) (0 <= q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.
引用
收藏
页数:20
相关论文
共 26 条