The coaxial MnO2/CNTs nanocomposite freestanding membrane on SSM substrate as anode materials in high performance lithium ion batteries

被引:18
作者
Wu, Yake [1 ,2 ]
Li, Xiaojing [1 ,3 ]
Xiao, Qizhen [1 ,2 ]
Lei, Gangtie [2 ]
Li, Zhaohui [2 ]
Guan, Jie [2 ]
机构
[1] Jiangsu Univ Technol, Sch Chem & Environm Engn, Changzhou 213001, Peoples R China
[2] Xiangtan Univ, Coll Chem, Minist Educ, Key Lab Environm Friendly Chem & Applicat, Xiangtan 411105, Hunan, Peoples R China
[3] Hebei Res Ctr Geoanal, Baoding 071051, Peoples R China
关键词
Coaxial MnO2 /CNTs nanocomposite; freestanding membrane; Electrodeposition; Anode; Lithium ion batteries; FACILE SYNTHESIS; HIGH-CAPACITY; NANOTUBE; HYBRID; OXIDE; ELECTRODES; COMPOSITE; BETA-MNO2; FILM;
D O I
10.1016/j.jelechem.2019.01.001
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The coaxial MnO2/CNTs nanocomposite freestanding membrane is prepared via a simple two-step process, including that CNTs are grown on the surface of stainless steel mesh by chemical vapor deposition and then MnO2 is coated onto the surface of CNTs using electrodeposition. Scanning electron microscopy and transmission electron microscopy demonstrate that MnO2 nanoflakes are uniformly deposited on the surface of CNTs to form the coaxial MnO2/CNTs nanocomposites freestanding membrane. The thickness of MnO2 shell is in range of 25-50 nm. Electrochemical characterizations shows that the initial discharge capacity of MnO2/CNTs nanocomposites freestanding membrane is as high as 2062 mAh g(-1) based on the total mass of MnO2/CNTs nanocomposites, and its capacity retention is 80% after 260 cycles compared with the second cycle. The result suggests that the as-prepared coaxial MnO2/CNTs nanocomposite freestanding membrane anode indicates excellent cycle stability and good rate capability. Moreover, it can be prepared on a large scale and suitable for industrial production due to its simple and low-cost prepared process.
引用
收藏
页码:161 / 166
页数:6
相关论文
共 41 条
[1]   Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries [J].
Asif, Muhammad ;
Rashad, Muhammad ;
Ali, Zeeshan ;
Qiu, Hailong ;
Li, Wei ;
Pan, Lujun ;
Hou, Yanglong .
MATERIALS TODAY ENERGY, 2018, 10 :108-117
[2]   A new lithium-copper-iron-oxide as a negative electrode material for lithium-ion batteries [J].
Chang, SK ;
Kim, HJ ;
Hong, ST .
JOURNAL OF POWER SOURCES, 2003, 119 :69-75
[3]   Controllable Synthesis of Hollow Bipyramid β-MnO2 and Its High Electrochemical Performance for Lithium Storage [J].
Chen, Wei-Min ;
Qie, Long ;
Shao, Qing-Guo ;
Yuan, Li-Xia ;
Zhang, Wu-Xing ;
Huang, Yun-Hui .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (06) :3047-3053
[4]   One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method [J].
Chen, Ying ;
Zhang, Yong ;
Geng, Dognsheng ;
Li, Ruying ;
Hong, Hanlie ;
Chen, Jingzhong ;
Sun, Xueliang .
CARBON, 2011, 49 (13) :4434-4442
[5]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[6]  
Gu T., 2016, J MAT CHEM A, V4
[7]   Controlled Growth of Porous α-Fe2O3 Branches on β-MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries [J].
Gu, Xin ;
Chen, Liang ;
Ju, Zhicheng ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (32) :4049-4056
[8]   Dissecting super-enhancer hierarchy based on chromatin interactions [J].
Huang, Jialiang ;
Li, Kailong ;
Cai, Wenqing ;
Liu, Xin ;
Zhang, Yuannyu ;
Orkin, Stuart H. ;
Xu, Jian ;
Yuan, Guo-Cheng .
NATURE COMMUNICATIONS, 2018, 9
[9]   Facile fabrication of CNTs@C@MoSe2@Se hybrids with amorphous structure for high performance anode in lithium-ion batteries [J].
Jin, Rencheng ;
Cui, Yuming ;
Wang, Qingyao ;
Li, Guihua .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 508 :435-442
[10]   Structural and electrochemical studies of α-manganese dioxide (α-MnO2) [J].
Johnson, CS ;
Dees, DW ;
Mansuetto, MF ;
Thackeray, MM ;
Vissers, DR ;
Argyriou, D ;
Loong, CK ;
Christensen, L .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :570-577