Entanglement and corner Hamiltonian spectra of integrable open spin chains

被引:22
作者
Kim, Panjin [1 ]
Katsura, Hosho [2 ]
Trivedi, Nandini [3 ]
Han, Jung Hoon [1 ]
机构
[1] Sungkyunkwan Univ, Dept Phys, Suwon 16419, South Korea
[2] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[3] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
关键词
ISOTROPIC HEISENBERG CHAIN; TRANSFER-MATRICES; RENORMALIZATION-GROUP; ARBITRARY SPINS; HUBBARD-MODEL; QUANTUM; INFORMATION; COMPUTATION; ENTROPY; LATTICE;
D O I
10.1103/PhysRevB.94.195110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the entanglement entropy (EE) and entanglement spectra (ES) of critical SU(N) (2 <= N <= 4) spin chains and other integrable models of finite length with the density matrix renormalization group method. For all models under investigation, we find a remarkable agreement of the level spacings and the degeneracy structure of the ES with the spectrum of the corner Hamiltonian (CS), defined as the generator of the associated corner transfer matrix. The correspondence holds between ES(n) at the nth cut position from the edge of the spin model, and the spectrum CS(n) of the corner Hamiltonian of length n, for all values of n that we have checked. The cut position dependence of the ES shows a period-N oscillatory behavior for a given SU(N) chain, reminiscent of the oscillatory part of the entanglement entropy observed in the past for the same models. However, the oscillations of the ES do not die out in the bulk of the chain, in contrast to the asymptotically vanishing oscillation of the entanglement entropy. We present a heuristic argument based on Young tableaux construction that can explain the period-N structure of the ES qualitatively.
引用
收藏
页数:13
相关论文
共 66 条
[1]  
[Anonymous], 2007, Dover books on physics
[2]  
[Anonymous], MATH P CAMBRIDGE PHI
[3]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[4]   EXACT SOLUTION OF THE ONE-DIMENSIONAL ISOTROPIC HEISENBERG CHAIN WITH ARBITRARY SPINS S [J].
BABUJIAN, HM .
PHYSICS LETTERS A, 1982, 90 (09) :479-482
[5]   SPECTRUM OF THE BIQUADRATIC SPIN-1 ANTIFERROMAGNETIC CHAIN [J].
BARBER, MN ;
BATCHELOR, MT .
PHYSICAL REVIEW B, 1989, 40 (07) :4621-4626
[6]   CORNER TRANSFER-MATRICES [J].
BAXTER, RJ .
PHYSICA A, 1981, 106 (1-2) :18-27
[7]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[8]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[9]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,