Superintegrable systems, multi-Hamiltonian structures and Nambu mechanics in an arbitrary dimension

被引:22
作者
Tegmen, A [1 ]
Verçin, A [1 ]
机构
[1] Ankara Univ, Dept Phys, Fac Sci, TR-06100 Ankara, Turkey
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2004年 / 19卷 / 03期
关键词
superintegrable systems; multi-Hamiltonian structures; Nambu mechanics;
D O I
10.1142/S0217751X04017112
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A general algebraic condition for the functional independence of 2n - 1 constants of motion of an n-dimensional maximal superintegrable Hamiltonian system has been proved for an arbitrary finite n. This makes it possible to construct, in a well-defined generic way, a normalized Nambu bracket which produces the correct Hamiltonian time evolution. Existence and explicit forms of pairwise compatible multi-Hamiltonian structures for any maximal superintegrable system have been established. The Calogero-Moser system, motion of a charged particle in a uniform perpendicular magnetic field and Smorodinsky-Winternitz potentials are considered as illustrative applications and their symmetry algebras as well as their Nambu formulations and alternative Poisson structures are presented.
引用
收藏
页码:393 / 409
页数:17
相关论文
共 26 条
[1]  
Arnold V., 1989, MATH METHODS CLASSIC, DOI DOI 10.1007/978-1-4757-2063-1
[2]   Geometric quantum mechanics [J].
Brody, DC ;
Hughston, LP .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) :19-53
[3]   REDUCTIONS OF SELF-DUAL YANG-MILLS FIELDS AND CLASSICAL-SYSTEMS [J].
CHAKRAVARTY, S ;
ABLOWITZ, MJ ;
CLARKSON, PA .
PHYSICAL REVIEW LETTERS, 1990, 65 (09) :1085-1087
[4]   Dynamical symmetries and Nambu mechanics [J].
Chatterjee, R .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (02) :117-126
[5]  
CURTRIGHT TL, 2002, HEPTH0212267
[6]  
CURTRIGHT TL, 2002, HEPTH0205063
[7]   Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems [J].
Daskaloyannis, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (03) :1100-1119
[8]   SUPERINTEGRABILITY OF THE WINTERNITZ SYSTEM [J].
EVANS, NW .
PHYSICS LETTERS A, 1990, 147 (8-9) :483-486
[9]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[10]   Super-integrable Calogero-type systems admit maximal number of Poisson structures [J].
Gonera, C ;
Nutku, Y .
PHYSICS LETTERS A, 2001, 285 (5-6) :301-306