Analysis of exit probability for a trajectory tracking robot in case of a rare event
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Rana, Rohit
[1
]
Gaur, Prerna
论文数: 0引用数: 0
h-index: 0
机构:
Netaji Subhas Univ Technol, Instrumentat & Control Engn Dept, New Delhi, IndiaNetaji Subhas Univ Technol, Instrumentat & Control Engn Dept, New Delhi, India
Gaur, Prerna
[1
]
论文数: 引用数:
h-index:
机构:
Agarwal, Vijyant
[2
]
Parthasarathy, Harish
论文数: 0引用数: 0
h-index: 0
机构:
Netaji Subhas Univ Technol, Elect & Commun Engn Dept, New Delhi, IndiaNetaji Subhas Univ Technol, Instrumentat & Control Engn Dept, New Delhi, India
Parthasarathy, Harish
[3
]
机构:
[1] Netaji Subhas Univ Technol, Instrumentat & Control Engn Dept, New Delhi, India
[2] Netaji Subhas Univ Technol, Mech Engn Dept, New Delhi, India
[3] Netaji Subhas Univ Technol, Elect & Commun Engn Dept, New Delhi, India
nonlinear dynamics;
large deviation theory;
Poisson process;
Gaussian noise;
robot;
probability;
robotics;
LARGE DEVIATION PRINCIPLE;
STATE OBSERVER;
SYSTEMS;
D O I:
10.1017/S0263574721000916
中图分类号:
TP24 [机器人技术];
学科分类号:
080202 ;
1405 ;
摘要:
In this paper, a novel statistical application of large deviation principle (LDP) to the robot trajectory tracking problem is presented. The exit probability of the trajectory from stability zone is evaluated, in the presence of small-amplitude Gaussian and Poisson noise. Afterward, the limit of the partition function for the average tracking error energy is derived by solving a fourth-order system of Euler-Lagrange equations. Stability and computational complexity of the proposed approach is investigated to show the superiority over the Lyapunov method. Finally, the proposed algorithm is validated by Monte Carlo simulations and on the commercially available Omni bundle(TM) robot.
机构:
Univ Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, FranceUniv Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, France
Barral, Julien
;
Loiseau, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Paris Rocquencourt, F-78153 Le Chesnay, FranceUniv Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, France
机构:
Morgan State Univ, Dept Elect & Comp Engn, 1700 E Cold Spring Lane,Schaefer Engn Bldg 331, Baltimore, MD 21251 USAMorgan State Univ, Dept Elect & Comp Engn, 1700 E Cold Spring Lane,Schaefer Engn Bldg 331, Baltimore, MD 21251 USA
机构:
Univ Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, FranceUniv Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, France
Barral, Julien
;
Loiseau, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Paris Rocquencourt, F-78153 Le Chesnay, FranceUniv Paris 13, LAGA, UMR 7539, Dept Math,Inst Galilee, F-93430 Villetaneuse, France
机构:
Morgan State Univ, Dept Elect & Comp Engn, 1700 E Cold Spring Lane,Schaefer Engn Bldg 331, Baltimore, MD 21251 USAMorgan State Univ, Dept Elect & Comp Engn, 1700 E Cold Spring Lane,Schaefer Engn Bldg 331, Baltimore, MD 21251 USA