NOETHER'S PROBLEM FOR ABELIAN EXTENSIONS OF CYCLIC P-GROUPS OF NILPOTENCY CLASS 2

被引:0
作者
Michailov, Ivo M. [1 ]
Dimitrov, Ivaylo [1 ]
Ivanov, Ivan [1 ]
机构
[1] Konstantin Preslaysky Univ Shumen, Fac Math & Informat, 115 Univ Ska St, Shumen 9700, Bulgaria
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2022年 / 75卷 / 03期
关键词
Noether's problem; the rationality problem; nilpotent groups; p-groups; metabelian groups; RATIONALITY;
D O I
10.7546/CRABS.2022.03.01
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let K be a field and G be a finite group. Let G act on the rational function field K(x(g) : g is an element of G) by K-automorphisms defined by g . x(h) = x(gh) for any g, h is an element of G. Denote by K(G) the fixed field K(x(g) : g is an element of G)(G). Noether's problem then asks whether K(G) is rational over K. Let p be prime and let G be a p-group of exponent p(e). Assume also that (i) char K = p > 0, or (ii) char K not equal p and K contains a primitive p(e)-th root of unity. In this paper we prove that K(G) is rational over K if G is any finite p-group of nilpotency class 2 which is an abelian extension of a cyclic group.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 9 条
[1]   Rationality of some projective linear actions [J].
Ahmad, H ;
Hajja, M ;
Kang, MC .
JOURNAL OF ALGEBRA, 2000, 228 (02) :643-658
[2]   Rationality of P-group actions [J].
Chu, H ;
Kang, MC .
JOURNAL OF ALGEBRA, 2001, 237 (02) :673-690
[3]  
Garibaldi S., 2003, AMS U LECT SERIES, V28
[4]   SOME ACTIONS OF SYMMETRICAL GROUPS [J].
HAJJA, M ;
KANG, MC .
JOURNAL OF ALGEBRA, 1995, 177 (02) :511-535
[5]  
Hu SJ, 2010, PROG MATH, V282, P149, DOI 10.1007/978-0-8176-4934-0_6
[6]   Noether's problem for p-groups with a cyclic subgroup of index p2 [J].
Kang, Ming-chang .
ADVANCES IN MATHEMATICS, 2011, 226 (01) :218-234
[7]   Bogomolov Multipliers for Some p-groups of Nilpotency Class 2 [J].
Michailov, Ivo .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (05) :541-552
[8]   GENERIC GALOIS EXTENSIONS AND PROBLEMS IN FIELD-THEORY [J].
SALTMAN, DJ .
ADVANCES IN MATHEMATICS, 1982, 43 (03) :250-283
[9]  
Swan R, 1983, Emmy Noether in Bryn Mawr