A Generic Approach for Classification of Psychological Disorders Diagnosis using EEG

被引:3
作者
Anwar, Talha [1 ]
Rehmat, Naeem [1 ]
Naveed, Hammad [1 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Computat Biol Res Lab, Karachi, Sindh, Pakistan
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
SCHIZOPHRENIA; EPILEPSY;
D O I
10.1109/EMBC46164.2021.9629976
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Electroencephalogram (EEG) is a widely used technique to diagnose psychological disorders. Until now, most of the studies focused on the diagnosis of a particular psychological disorder using EEG. We propose a generic approach to diagnose the different type of psychological disorders with high accuracy. The proposed approach is tested on five different datasets and three psychological disorders. Electrodes having higher signal to noise ratio are selected from the raw EEG signals. Multiple linear and non-linear features are then extracted from the selected electrodes. After feature selection, machine learning is used to diagnose the psychological disorders. We kept the same generic approach for all the datasets and diseases and achieved 93%, 85% and 80% F1 score on Schizophrenia, Epilepsy and Parkinson disease, respectively.
引用
收藏
页码:2025 / 2029
页数:5
相关论文
共 17 条
[1]   Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy [J].
Anier, A. ;
Lipping, T. ;
Ferenets, R. ;
Puumala, P. ;
Sonkajarvi, E. ;
Ratsep, I. ;
Jantti, V. .
BRITISH JOURNAL OF ANAESTHESIA, 2012, 109 (06) :928-934
[2]   The Classification of Noise-Afflicted Remotely Sensed Data Using Three Machine-Learning Techniques: Effect of Different Levels and Types of Noise on Accuracy [J].
Boonprong, Sornkitja ;
Cao, Chunxiang ;
Chen, Wei ;
Ni, Xiliang ;
Xu, Min ;
Acharya, Bipin Kumar .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (07)
[3]   Diminished EEG habituation to novel events effectively classifies Parkinson's patients [J].
Cavanagh, James F. ;
Kumar, Praveen ;
Mueller, Andrea A. ;
Richardson, Sarah Pirio ;
Mueen, Abdullah .
CLINICAL NEUROPHYSIOLOGY, 2018, 129 (02) :409-418
[4]   Bidirectional relation between schizophrenia and epilepsy: A population-based retrospective cohort study [J].
Chang, Yu-Tzu ;
Chen, Pei-Chun ;
Tsai, I-Ju ;
Sung, Fung-Chang ;
Chin, Zheng-Nan ;
Kuo, Huang-Tsung ;
Tsai, Chang-Hai ;
Chou, I-Ching .
EPILEPSIA, 2011, 52 (11) :2036-2042
[5]   Specialized Consultation for Suspected Recent-onset Schizophrenia: Diagnostic Clarity and the Distorting Impact of Anxiety and Reported Auditory Hallucinations [J].
Coulter, Chelsey ;
Baker, Krista K. ;
Margolis, Russell L. .
JOURNAL OF PSYCHIATRIC PRACTICE, 2019, 25 (02) :76-81
[6]   A comparison of waveform fractal dimension algorithms [J].
Esteller, R ;
Vachtsevanos, G ;
Echauz, J ;
Litt, B .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (02) :177-183
[7]   Did I Do That? Abnormal Predictive Processes in Schizophrenia When Button Pressing to Deliver a Tone [J].
Ford, Judith M. ;
Palzes, Vanessa A. ;
Roach, Brian J. ;
Mathalon, Daniel H. .
SCHIZOPHRENIA BULLETIN, 2014, 40 (04) :804-812
[8]  
Garner D.M., 2018, ROMANIAN J DIABETES, V5, P289, DOI [10.2478/rjdnmd-2018-0034, DOI 10.2478/RJDNMD-2018-0034]
[9]   Automated detection of schizophrenia using nonlinear signal processing methods [J].
Jahmunah, V ;
Oh, Shu Lih ;
Rajinikanth, V ;
Ciaccio, Edward J. ;
Cheong, Kang Hao ;
Arunkumar, N. ;
Acharya, U. Rajendra .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 100
[10]   Structural and Functional Brain Abnormalities in Schizophrenia [J].
Karlsgodt, Katherine H. ;
Sun, Daqiang ;
Cannon, Tyrone D. .
CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE, 2010, 19 (04) :226-231