Structured population on two patches: modeling dispersal and delay

被引:54
作者
So, JWH [1 ]
Wu, JH
Zou, XF
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[3] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
关键词
maturation delay; patchy environment; spatial dispersion; Hopf bifurcation; synchronized oscillations; phased-locked oscillations;
D O I
10.1007/s002850100081
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.
引用
收藏
页码:37 / 51
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1977, LECT NOTES BIOMATHEM
[2]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[3]  
FREEDMAN HI, 1986, B MATH BIOL, V48, P485, DOI 10.1007/BF02462319
[4]   A predator-prey reaction-diffusion system with nonlocal effects [J].
Gourley, SA ;
Britton, NF .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 34 (03) :297-333
[5]   INSTABILITY OF TRAVELING-WAVE SOLUTIONS OF A POPULATION-MODEL WITH NONLOCAL EFFECTS [J].
GOURLEY, SA ;
BRITTON, NF .
IMA JOURNAL OF APPLIED MATHEMATICS, 1993, 51 (03) :299-310
[6]  
Hale J.K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[7]  
HASSARD BD, 1981, THEORY APPL HPF BIFU
[8]  
Kuang Y, 1993, Mathematics in Science and Engineering
[9]  
Levin S.A., 1976, Lectures Maths Life Sci, V8, P1
[10]  
Levin S. A., 1986, MATH ECOL, P295