Special regularizing methods for ill-posed problems with sourcewise represented solutions

被引:11
作者
Leonov, AS
Yagola, AG
机构
[1] Moscow Engn Phys Inst, Dept Math, Moscow 115409, Russia
[2] Moscow MV Lomonosov State Univ, Fac Phys, Dept Math, Moscow 119899, Russia
关键词
D O I
10.1088/0266-5611/14/6/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose new special versions of the discrepancy method, the quasisolution method and the Tikhonov method for the case when we possess the additional a priori information that the solution of an ill-posed problem has a source representation. In the methods presented no saturation occurs. All these methods are optimal in order of accuracy. They can be numerically implemented.
引用
收藏
页码:1539 / 1550
页数:12
相关论文
共 17 条
[1]  
Bakushinskii A.B., 1994, ILL POSED PROBLEMS T
[2]  
Engl H.W., 1996, Mathematics and Its Applications, V375
[3]  
Goncharskii A V., 1973, USSR Comput. Math. Math. Phys, V13, P25, DOI DOI 10.1016/0041-5553(73)90128-6
[4]  
GONCHARSKII AV, 1972, USSR COMP MATH MATH, V12, P286
[5]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[6]  
Ivanov V. K., 1978, THEORY LINEAR ILL PO
[7]  
Leonov AS, 1996, COMP MATH MATH PHYS+, V36, P1193
[8]  
LEONOV AS, 1998, MOSCOW U PHYS BULL, V2, P62
[9]  
LEONOV AS, 1986, MAT SBORNIK, V129, P218
[10]  
Tanana V. P., 1987, OPTIMIZATION METHODS