Plasma Beta Stratification in the Solar Atmosphere: A Possible Explanation for the Penumbra Formation

被引:30
作者
Bourdin, Ph. -A. [1 ]
机构
[1] Austrian Acad Sci, Space Res Inst, Schmiedlstr 6, A-8042 Graz, Austria
关键词
magnetic fields; methods: numerical; Sun: chromosphere; Sun: corona; Sun: photosphere; sunspots; HINODE; MISSION;
D O I
10.3847/2041-8213/aa9988
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Plasma beta is an important and fundamental physical quantity in order to understand plasma dynamics, particularly in the context of magnetically active stars, because it tells about the domination of magnetic versus thermodynamic processes on the plasma motion. We estimate the value ranges of plasma beta in different regions within the solar atmosphere and we describe a possible mechanism that helps forming a penumbra. For that we evaluate data from a 3D magnetohydrodynamic model of the solar corona above a magnetically active region. We compare our results with previously established data that is based on magnetic field extrapolations and that was matched for some observations. Our model data suggest that plasma beta in the photosphere should be considered to be larger than unity outside of sunspots. However, in the corona we also find that the beta value range reaches lower than previously thought, which coincides with a recent observation. We present an idea based on a gravity-driven process in a high-beta regime that might be responsible for the formation of the penumbra around sunspot umbra, where the vertical field strength reaches a given threshold. This process would also explain counter-Evershed flows. Regarding the thermal and magnetic pressure within the mixed-polarity solar atmosphere, including non-vertical magnetic field and quiet regions, plasma beta may reach unity at practically any height from the photosphere to the outer corona.
引用
收藏
页数:5
相关论文
共 25 条
[1]  
Bello Gonzalez N., 2016, ASP C SER N IN PRESS
[2]  
Bourdin P.-A., 2014, PASJ, V66, pS78
[3]  
Bourdin P.-A., 2014, CENT EUR ASTROPHYS B, V38, P1
[4]   Scaling laws of coronal loops compared to a 3D MHD model of an active region [J].
Bourdin, Ph. -A. ;
Bingert, S. ;
Peter, H. .
ASTRONOMY & ASTROPHYSICS, 2016, 589
[5]   Coronal energy input and dissipation in a solar active region 3D MHD model [J].
Bourdin, Ph. -A. ;
Bingert, S. ;
Peter, H. .
ASTRONOMY & ASTROPHYSICS, 2015, 580
[6]   Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region [J].
Bourdin, Ph. -A. ;
Bingert, S. ;
Peter, H. .
ASTRONOMY & ASTROPHYSICS, 2013, 555
[7]   Catalog of fine-structured electron velocity distribution functions Part 1: Antiparallel magnetic-field reconnection (Geospace Environmental Modeling case) [J].
Bourdin, Philippe-A. .
ANNALES GEOPHYSICAE, 2017, 35 (05) :1051-1067
[8]   EFFECT OF CORONAL ELEMENTAL ABUNDANCES ON THE RADIATIVE LOSS FUNCTION [J].
COOK, JW ;
CHENG, CC ;
JACOBS, VL ;
ANTIOCHOS, SK .
ASTROPHYSICAL JOURNAL, 1989, 338 (02) :1176-1183
[9]   The EUV imaging spectrometer for Hinode [J].
Culhane, J. L. ;
Harra, L. K. ;
James, A. M. ;
Al-Janabi, K. ;
Bradley, L. J. ;
Chaudry, R. A. ;
Rees, K. ;
Tandy, J. A. ;
Thomas, P. ;
Whillock, M. C. R. ;
Winter, B. ;
Doschek, G. A. ;
Korendyke, C. M. ;
Brown, C. M. ;
Myers, S. ;
Mariska, J. ;
Seely, J. ;
Lang, J. ;
Kent, B. J. ;
Shaughnessy, B. M. ;
Young, P. R. ;
Simnett, G. M. ;
Castelli, C. M. ;
Mahmoud, S. ;
Mapson-Menard, H. ;
Probyn, B. J. ;
Thomas, R. J. ;
Davila, J. ;
Dere, K. ;
Windt, D. ;
Shea, J. ;
Hagood, R. ;
Moye, R. ;
Hara, H. ;
Watanabe, T. ;
Matsuzaki, K. ;
Kosugi, T. ;
Hansteen, V. ;
Wikstol, O. .
SOLAR PHYSICS, 2007, 243 (01) :19-61
[10]   ENERGY-BALANCE IN THE SOLAR TRANSITION REGION .3. HELIUM EMISSION IN HYDROSTATIC, CONSTANT-ABUNDANCE MODELS WITH DIFFUSION [J].
FONTENLA, JM ;
AVRETT, EH ;
LOESER, R .
ASTROPHYSICAL JOURNAL, 1993, 406 (01) :319-345