Ion Solvation and Dynamics at Solid Electrolyte Interphases: A Long Way from Bulk?

被引:24
作者
Raguette, Lauren [1 ]
Jorn, Ryan [1 ]
机构
[1] Villanova Univ, Dept Chem, Villanova, PA 19085 USA
基金
美国国家科学基金会;
关键词
MIXED CARBONATE/LIPF6 ELECTROLYTE; MOLECULAR-DYNAMICS; LITHIUM-ION; ETHYLENE CARBONATE; PROPYLENE CARBONATE; SEI FORMATION; RECHARGEABLE BATTERIES; FLUOROETHYLENE CARBONATE; REDUCTIVE DECOMPOSITION; DEFECT THERMODYNAMICS;
D O I
10.1021/acs.jpcc.7b11472
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable lithium-ion battery technology has revolutionized energy storage for small electronic devices. However, a deeper understanding is required of the interfaces present in such devices for this technology to continue to advance. While many insights into the solid electrolyte interphase (SEI) for lithium-ion systems have been collected from decades of study, many questions also remain. In particular, this work is interested in exploring SEI composition and its impact on electrolyte structure and dynamics. By using a previously tested classical molecular dynamics approach, the impact of the crystallinity of the SEI interface as well as its content of organic and inorganic species is assessed. It is found that the presence of an amorphous SEI results in the accumulation of ions at the interface, ordering of solvent molecules, and a slowing down of solvation dynamics. These behaviors are intensified when crystal surfaces from LiF and Li2CO3 are considered. In addition to these general observations, the changes in lithium and PF6- solvation structure are also considered as they approach the SEI interface. In both cases, the drive to aggregate arising from greater ion accumulation is shielded in part from interaction with the charged groups in the SEI interface. This competition is tilted toward salt aggregation in the case of crystalline SEI, suggesting a significantly different solvation environment than typically seen in bulk for adsorbed species.
引用
收藏
页码:3219 / 3232
页数:14
相关论文
共 72 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents-Ethylene carbonate and propylene carbonate [J].
Allen, Joshua L. ;
Borodin, Oleg ;
Seo, Daniel M. ;
Henderson, Wesley A. .
JOURNAL OF POWER SOURCES, 2014, 267 :821-830
[3]   Li+ Transport and Mechanical Properties of Model Solid Electrolyte Interphases (SEI): Insight from Atomistic Molecular Dynamics Simulations [J].
Bedrov, Dmitry ;
Borodin, Oleg ;
Hooper, Justin B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (30) :16098-16109
[4]   Reactions of Singly-Reduced Ethylene Carbonate in Lithium Battery Electrolytes: A Molecular Dynamics Simulation Study Using the ReaxFF [J].
Bedrov, Dmitry ;
Smith, Grant D. ;
van Duin, Adri C. T. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (11) :2978-2985
[5]   Rechargeable Batteries: Grasping for the Limits of Chemistry [J].
Berg, Erik J. ;
Villevieille, Claire ;
Streich, Daniel ;
Trabesinger, Sigita ;
Novak, Petr .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2468-A2475
[6]   Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes [J].
Bhatt, Mahesh Datt ;
O'Dwyer, Colm .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4799-4844
[7]   Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes [J].
Borodin, O ;
Smith, GD ;
Douglas, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6824-6837
[8]   Molecular dynamics simulations of lithium alkyl carbonates [J].
Borodin, Oleg ;
Smith, Grant D. ;
Fan, Peng .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22773-22779
[9]   Interfacial Structure and Dynamics of the Lithium Alkyl Dicarbonate SEI Components in Contact with the Lithium Battery Electrolyte [J].
Borodin, Oleg ;
Bedrov, Dmitry .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (32) :18362-18371
[10]   Molecular Dynamics Simulations and Experimental Study of Lithium Ion Transport in Dilithium Ethylene Dicarbonate [J].
Borodin, Oleg ;
Zhuang, Guorong V. ;
Ross, Philip N. ;
Xu, Kang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (15) :7433-7444