Accelerated Alternating Projections for Robust Principal Component Analysis

被引:0
作者
Cai, HanQin [1 ]
Cai, Jian-Feng [2 ]
Wei, Ke [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[3] Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
关键词
Robust PCA; Alternating Projections; Matrix Manifold; Tangent Space; Subspace Projection; RANK MATRIX COMPLETION; MINIMIZATION ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study robust PCA for the fully observed setting, which is about separating a low rank matrix L and a sparse matrix S from their sum D = L + S. In this paper, a new algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which signi fi cantly improves the computational e ffi ciency of the existing alternating projections proposed in (Netrapalli et al., 2014) when updating the low rank factor. The acceleration is achieved by fi rst projecting a matrix onto some low dimensional subspace before obtaining a new estimate of the low rank matrix via truncated SVD. Exact recovery guarantee has been established which shows linear convergence of the proposed algorithm. Empirical performance evaluations establish the advantage of our algorithm over other state-of-theart algorithms for robust PCA.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Best Pair Formulation & Accelerated Scheme for Non-Convex Principal Component Pursuit
    Dutta, Aritra
    Hanzely, Filip
    Liang, Jingwei
    Richtarik, Peter
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 6128 - 6141
  • [42] Cadzow's basic algorithm, alternating projections and singular spectrum analysis
    Gillard, Jonathan
    STATISTICS AND ITS INTERFACE, 2010, 3 (03) : 335 - 343
  • [43] Dealing with missing values and outliers in principal component analysis
    Stanimirova, I.
    Daszykowski, M.
    Walczak, B.
    TALANTA, 2007, 72 (01) : 172 - 178
  • [44] S-Estimators for Functional Principal Component Analysis
    Boente, Graciela
    Salibian-Barrera, Matias
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (511) : 1100 - 1111
  • [45] Accelerating the convergence of the method of alternating projections
    Bauschke, HH
    Deutsch, F
    Hundal, H
    Park, SH
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) : 3433 - 3461
  • [46] Transversality and Alternating Projections for Nonconvex Sets
    D. Drusvyatskiy
    A. D. Ioffe
    A. S. Lewis
    Foundations of Computational Mathematics, 2015, 15 : 1637 - 1651
  • [47] A note on the finite convergence of alternating projections
    Bui, Hoa T.
    Loxton, Ryan
    Moeini, Asghar
    OPERATIONS RESEARCH LETTERS, 2021, 49 (03) : 431 - 438
  • [48] Transversality and Alternating Projections for Nonconvex Sets
    Drusvyatskiy, D.
    Ioffe, A. D.
    Lewis, A. S.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (06) : 1637 - 1651
  • [49] Alternating Adaptive Projections in Antenna Synthesis
    Leonardo, Javier
    Quijano, Araque
    Vecchi, Giuseppe
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (03) : 727 - 737
  • [50] On Local Convergence of the Method of Alternating Projections
    Dominikus Noll
    Aude Rondepierre
    Foundations of Computational Mathematics, 2016, 16 : 425 - 455