From snoRNA to miRNA: Dual function regulatory non-coding RNAs

被引:168
作者
Scott, Michelle S. [1 ]
Ono, Motoharu [2 ]
机构
[1] Univ Dundee, Div Biol Chem & Drug Discovery, Coll Life Sci, Dundee DD1 5EH, Scotland
[2] Univ Dundee, Coll Life Sci, Wellcome Trust Ctr Gene Regulat & Express, Dundee DD1 5EH, Scotland
基金
英国惠康基金;
关键词
Small nucleolar RNA; Micro RNA; Evolution; Dual function; SMALL NUCLEOLAR RNAS; BOX C/D SNORNAS; HOST GENES; TRANSPOSABLE ELEMENTS; C-ELEGANS; COMPREHENSIVE DATABASE; COMPLEX ORGANISMS; HUMAN MICRORNAS; GUIDE SNORNAS; INTERFERENCE;
D O I
10.1016/j.biochi.2011.05.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small nucleolar RNAs (snoRNAs) are an ancient class of small non-coding RNAs present in all eukaryotes and a subset of archaea that carry out a fundamental role in the modification and processing of ribosomal RNA. In recent years, however, a large proportion of snoRNAs have been found to be further processed into smaller molecules, some of which display different functionality. In parallel, several studies have uncovered extensive similarities between snoRNAs and other types of small non-coding RNAs, and in particular microRNAs. Here, we explore the extent of the relationship between these types of non-coding RNA and the possible underlying evolutionary forces that shaped this subset of the current non-coding RNA landscape. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1987 / 1992
页数:6
相关论文
共 87 条
[1]   Loss of dyskerin reduces the accumulation of a subset of H/ACA snoRNA-derived miRNA [J].
Alawi, Faizan ;
Lin, Ping .
CELL CYCLE, 2010, 9 (12) :2467-2469
[2]   The expanding snoRNA world [J].
Bachellerie, JP ;
Cavaillé, J ;
Hüttenhofer, A .
BIOCHIMIE, 2002, 84 (08) :775-790
[3]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[4]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[5]   snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions [J].
Bazeley, Peter S. ;
Shepelev, Valery ;
Talebizadeh, Zohreh ;
Butler, Merlin G. ;
Fedorova, Larisa ;
Filatov, Vadim ;
Fedorov, Alexei .
GENE, 2008, 408 (1-2) :172-179
[6]   Role for a bidentate ribonuclease in the initiation step of RNA interference [J].
Bernstein, E ;
Caudy, AA ;
Hammond, SM ;
Hannon, GJ .
NATURE, 2001, 409 (6818) :363-366
[7]   Evolutionary patterns of non-coding RNAs [J].
Bompfünewerer, AF ;
Flamm, C ;
Fried, C ;
Fritzsch, G ;
Hofacker, IL ;
Lehmann, J ;
Missal, K ;
Mosig, A ;
Müller, B ;
Prohaska, SJ ;
Stadler, BMR ;
Stadler, PF ;
Tanzer, A ;
Washietl, S ;
Witwer, C .
THEORY IN BIOSCIENCES, 2005, 123 (04) :301-369
[8]   RNA polymerase III transcribes human microRNAs [J].
Borchert, Glen M. ;
Lanier, William ;
Davidson, Beverly L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (12) :1097-1101
[9]   Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs [J].
Brameier, Markus ;
Herwig, Astrid ;
Reinhardt, Richard ;
Walter, Lutz ;
Gruber, Jens .
NUCLEIC ACIDS RESEARCH, 2011, 39 (02) :675-686
[10]   Intronic noncoding RNAs and splicing [J].
Brown, John W. S. ;
Marshall, David F. ;
Echeverria, Manuel .
TRENDS IN PLANT SCIENCE, 2008, 13 (07) :335-342