Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice

被引:10
|
作者
Vanstone, Alex [1 ,2 ]
Gartside, Jack C. [1 ]
Stenning, Kilian D. [1 ]
Dion, Troy [2 ,3 ]
Arroo, Daan M. [2 ,4 ]
Branford, Will R. [1 ,5 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[3] Kyushu Univ, Solid State Phys Lab, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[4] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[5] Imperial Coll London, London Ctr Nanotechnol, London SW7 2AZ, England
来源
NEW JOURNAL OF PHYSICS | 2022年 / 24卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
artificial spin ice; magnonics; magnetic microstates; ferromagnetic resonance; nanomagnetism; nanostructures; STATE;
D O I
10.1088/1367-2630/ac608b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections ('quenched disorder') and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a 'spectral fingerprint' of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution.
引用
收藏
页数:12
相关论文
共 47 条
  • [21] Building blocks of an artificial kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands
    Mengotti, E.
    Heyderman, L. J.
    Fraile Rodriguez, A.
    Bisig, A.
    Le Guyader, L.
    Nolting, F.
    Braun, H. B.
    PHYSICAL REVIEW B, 2008, 78 (14):
  • [22] Spin wave spectral probing of degenerate microstates in building-block of square artificial spin ice
    Arora, Nimisha
    Das, Pintu
    AIP ADVANCES, 2021, 11 (03)
  • [23] Ground state study of the thin ferromagnetic nano-islands for artificial spin ice arrays
    Vieira Junior, D. S.
    Leonel, S. A.
    Dias, R. A.
    Toscano, D.
    Coura, P. Z.
    Sato, F.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (09)
  • [24] Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays
    Wysin, G. M.
    Moura-Melo, W. A.
    Mol, L. A. S.
    Pereira, A. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (29)
  • [25] Ferromagnetic resonance in three-dimensional tilted-square artificial spin ices
    Alatteili, Ghanem
    Roxburgh, Alison
    Iacocca, Ezio
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [26] Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice
    Jack C. Gartside
    Alex Vanstone
    Troy Dion
    Kilian D. Stenning
    Daan M. Arroo
    Hidekazu Kurebayashi
    Will R. Branford
    Nature Communications, 12
  • [27] Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice
    Gartside, Jack C.
    Vanstone, Alex
    Dion, Troy
    Stenning, Kilian D.
    Arroo, Daan M.
    Kurebayashi, Hidekazu
    Branford, Will R.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification
    Dion, T.
    Arroo, D. M.
    Yamanoi, K.
    Kimura, T.
    Gartside, J. C.
    Cohen, L. F.
    Kurebayashi, H.
    Branford, W. R.
    PHYSICAL REVIEW B, 2019, 100 (05)
  • [29] Spin Precession Mapping at Ferromagnetic Resonance via Nuclear Resonant Scattering of Synchrotron Radiation
    Bocklage, Lars
    Swoboda, Christian
    Schlage, Kai
    Wille, Hans-Christian
    Dzemiantsova, Liudmila
    Bajt, Sasa
    Meier, Guido
    Roehlsberger, Ralf
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [30] Dynamic exchange via spin currents in acoustic and optical modes of ferromagnetic resonance in spin-valve structures
    Timopheev, A. A.
    Pogorelov, Yu. G.
    Cardoso, S.
    Freitas, P. P.
    Kakazei, G. N.
    Sobolev, N. A.
    PHYSICAL REVIEW B, 2014, 89 (14):