A Demonstration of ST-Hadoop: A MapReduce Framework for Big Spatio-temporal Data

被引:16
|
作者
Alarabi, Louai [1 ]
Mokbel, Mohamed F. [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2017年 / 10卷 / 12期
关键词
D O I
10.14778/3137765.3137819
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This demo presents ST-Hadoop; the first full-fledged open-source MapReduce framework with a native support for spatio-temporal data. ST-Hadoop injects spatio-temporal awareness in the Hadoop base code, which results in achieving order(s) of magnitude better performance than Hadoop and SpatialHadoop when dealing with spatio-temporal data and queries. The key idea behind ST-Hadoop is its ability in indexing spatio-temporal data within Hadoop Distributed File System (HDFS). A real system prototype of ST-Hadoop, running on a local cluster of 24 machines, is demonstrated with two big-spatio-temporal datasets of Twitter and NYC Taxi data, each of around one billion records.
引用
收藏
页码:1961 / 1964
页数:4
相关论文
共 50 条
  • [21] Scientific data processing framework for Hadoop MapReduce
    Department of Computer and Information, Xinxiang University, Xinxiang, China
    1600, Journal of Chemical and Pharmaceutical Research, 3/668 Malviya Nagar, Jaipur, Rajasthan, India (06):
  • [22] Distributed processing of big mobility data as spatio-temporal data streams
    Zdravko Galić
    Emir Mešković
    Dario Osmanović
    GeoInformatica, 2017, 21 : 263 - 291
  • [23] Distributed processing of big mobility data as spatio-temporal data streams
    Galic, Zdravko
    Meskovic, Emir
    Osmanovic, Dario
    GEOINFORMATICA, 2017, 21 (02) : 263 - 291
  • [24] A generic algorithmic framework for aggregation of spatio-temporal data
    Jeong, SH
    Fernandes, AAA
    Paton, NW
    Griffiths, T
    16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2004, : 245 - 254
  • [25] A Framework for Scalable Correlation of Spatio-temporal Event Data
    Hagedorn, Stefan
    Sattler, Kai-Uwe
    Gertz, Michael
    DATA SCIENCE, 2015, 9147 : 9 - 15
  • [26] An Extendable Framework for Managing Uncertain Spatio-Temporal Data
    Emrich, Tobias
    Franzke, Maximilian
    Kriegel, Hans-Peter
    Niedermayer, Johannes
    Renz, Matthias
    Zuefle, Andreas
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 1087 - 1090
  • [27] Scalable Solution for the Anonymization of Big Data Spatio-Temporal Trajectories
    Eddine, Hajlaoui Jalel
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT I, 2022, 13375 : 465 - 476
  • [28] A Big Data Platform For Spatio-Temporal Social Event Discovery
    Khan, Aamir Shoeb Alam
    Afyouni, Imad
    Al Aghbari, Zaher
    2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 248 - 249
  • [29] STANDARDS-BASED SERVICES FOR BIG SPATIO-TEMPORAL DATA
    Baumann, P.
    Merticariu, V.
    Dumitru, A.
    Misev, D.
    XXIII ISPRS CONGRESS, COMMISSION IV, 2016, 41 (B4): : 691 - 699
  • [30] MR-Swarm: Mining Swarms from Big Spatio-Temporal Trajectories Using MapReduce
    Yu, Yanwei
    Qi, Jianpeng
    Lu, Yunhui
    Zhang, Yonggang
    Liu, Zhaowei
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2016, 2016, 9937 : 568 - 575