A Demonstration of ST-Hadoop: A MapReduce Framework for Big Spatio-temporal Data

被引:18
作者
Alarabi, Louai [1 ]
Mokbel, Mohamed F. [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2017年 / 10卷 / 12期
关键词
D O I
10.14778/3137765.3137819
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This demo presents ST-Hadoop; the first full-fledged open-source MapReduce framework with a native support for spatio-temporal data. ST-Hadoop injects spatio-temporal awareness in the Hadoop base code, which results in achieving order(s) of magnitude better performance than Hadoop and SpatialHadoop when dealing with spatio-temporal data and queries. The key idea behind ST-Hadoop is its ability in indexing spatio-temporal data within Hadoop Distributed File System (HDFS). A real system prototype of ST-Hadoop, running on a local cluster of 24 machines, is demonstrated with two big-spatio-temporal datasets of Twitter and NYC Taxi data, each of around one billion records.
引用
收藏
页码:1961 / 1964
页数:4
相关论文
共 6 条
[1]  
Eldawy Ahmed, 2015, 2015 IEEE 31st International Conference on Data Engineering (ICDE), P1352, DOI 10.1109/ICDE.2015.7113382
[2]  
Eldawy A, 2015, PROC INT CONF DATA, P1585, DOI 10.1109/ICDE.2015.7113427
[3]  
Eldawy A, 2014, PROC INT CONF DATA, P1242, DOI 10.1109/ICDE.2014.6816751
[4]   A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce [J].
Li, Zhenlong ;
Hu, Fei ;
Schnase, John L. ;
Duffy, Daniel Q. ;
Lee, Tsengdar ;
Bowen, Michael K. ;
Yang, Chaowei .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (01) :17-35
[5]  
Ma Q., 2009, P 1 INT WORKSH CLOUD, P9, DOI DOI 10.1145/1651263.1651266
[6]  
Tan Haoyu., 2012, Proceedings of the 21st ACM international conference on Information and knowledge management, P2139