The extended fuzzy C-means algorithm for hotspots in spatio-temporal GIS

被引:30
作者
Di Martino, Ferdinando [1 ]
Sessa, Salvatore [1 ]
机构
[1] Univ Naples Federico 2, Dipartimento Costruzioni & Metodi Matemat Archite, I-80134 Naples, Italy
关键词
EFCM; FCM; GIS; Hotspot;
D O I
10.1016/j.eswa.2011.03.071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In spatial analysis buffer impact areas are called hotspots and are determined by means of density clustering methods. In a previous work, we found these hotspots in the context of a Geographic Information System (GIS) by using the extended fuzzy C-means (EFCM). Here we show how the spatial distribution of the hotspots can evolve temporally and like applicational example, we present the spatial-temporal evolution in the period 2000-2006 of the fire point-events data of the Santa Fe district (NM) (downloaded from URL: www.fs.fed.us/r3/gis/sfe_gis.shtml). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11829 / 11836
页数:8
相关论文
共 11 条
[1]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[2]  
Chainey SP, 2002, INNOVATIONS GIS, V9
[3]  
Di Martino F, 2009, J UNCERTAIN SYST, V3, P298
[4]  
Grubesic T. H., 2001, ANN C CMRC DALL
[5]  
Harries K., 1999, GEOGRAPHIC MAPPING C
[6]   Fuzzy clustering with volume prototypes and adaptive cluster merging [J].
Kaymak, U ;
Setnes, M .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (06) :705-712
[7]  
Kaymak U, 1997, INTELLIGENT HYBRID S, P91, DOI DOI 10.1007/97814615619104
[8]   Information diffusion-based spatio-temporal risk analysis of grassland fire disaster in northern China [J].
Liu, Xingpeng ;
Zhang, Jiquan ;
Cai, Weiying ;
Tong, Zhijun .
KNOWLEDGE-BASED SYSTEMS, 2010, 23 (01) :53-60
[9]  
Martino F Di, 2007, INT J HYBRID INTELL, V4, P1
[10]  
MCGUIRE PG, 1999, 3 INT CRIME GEOGRAPH