Clustering-Aided Multi-View Classification: A Case Study on Android Malware Detection

被引:19
作者
Appice, Annalisa [1 ,2 ]
Andresini, Giuseppina [1 ]
Malerba, Donato [1 ,2 ]
机构
[1] Univ Bari Aldo Moro, Dept Informat, Via Orabona 4, I-70125 Bari, Italy
[2] Consorzio Interuniv Nazl Informat CINI, Via Orabona 4, I-70125 Bari, Italy
关键词
Multi-view Learning; Classification; Clustering; Android Malware Detection; Android Application Static Analysis; SECURITY; ENSEMBLE; ALGORITHM;
D O I
10.1007/s10844-020-00598-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recognizing malware before its installation plays a crucial role in keeping an android device safe. In this paper we describe a supervised method that is able to analyse multiple information (e.g. permissions, api calls and network addresses) that can be retrieved through a broad static analysis of android applications. In particular, we propose a novel multi-view machine learning approach to malware detection, which couples knowledge extracted via both clustering and classification. In an assessment, we evaluate the effectiveness of the proposed method using benchmark Android applications and established machine learning metrics.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 60 条
[11]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[12]  
Ceci Michelangelo, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P11, DOI 10.1007/978-3-642-31537-4_2
[13]   Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware Detection [J].
Demontis, Ambra ;
Melis, Marco ;
Biggio, Battista ;
Maiorca, Davide ;
Arp, Daniel ;
Rieck, Konrad ;
Corona, Igino ;
Giacinto, Giorgio ;
Roli, Fabio .
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2019, 16 (04) :711-724
[14]   DAPASA: Detecting Android Piggybacked Apps Through Sensitive Subgraph Analysis [J].
Fan, Ming ;
Liu, Jun ;
Wang, Wei ;
Li, Haifei ;
Tian, Zhenzhou ;
Liu, Ting .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2017, 12 (08) :1772-1785
[15]  
Fernandez A., 2018, Learning From Imbalanced Data Sets, P63, DOI [DOI 10.1007/978-3-319-98074-4, 10.1007/978-3-319-98074-4_4]
[16]   Evolving meta-ensemble of classifiers for handling incomplete and unbalanced datasets in the cyber security domain [J].
Folino, G. ;
Pisani, F. S. .
APPLIED SOFT COMPUTING, 2016, 47 :179-190
[17]   Multi-view stacking for activity recognition with sound and accelerometer data [J].
Garcia-Ceja, Enrique ;
Galvan-Tejada, Carlos E. ;
Brena, Ramon .
INFORMATION FUSION, 2018, 40 :45-56
[18]   SafeDroid: A Distributed Malware Detection Service for Android [J].
Goyal, Rohit ;
Spognardi, Angelo ;
Dragoni, Nicola ;
Argyriou, Marios .
2016 IEEE 9TH INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED COMPUTING AND APPLICATIONS (SOCA), 2016, :59-66
[19]  
Guo SQ, 2010, LECT NOTES COMPUT SC, V6444, P259, DOI 10.1007/978-3-642-17534-3_32
[20]  
Idrees F, 2014, IEEE CONF WIREL MOB, P354, DOI 10.1109/WiMOB.2014.6962194