Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval

被引:108
作者
Dutta, Anjan [1 ]
Akata, Zeynep [2 ]
机构
[1] Autonomous Univ Barcelona, Comp Vis Ctr, Barcelona, Spain
[2] Univ Amsterdam, Amsterdam Machine Learning Lab, Amsterdam, Netherlands
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00523
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets.
引用
收藏
页码:5084 / 5093
页数:10
相关论文
共 68 条
[1]   Multi-Cue Zero-Shot Learning with Strong Supervision [J].
Akata, Zeynep ;
Malinowski, Mateusz ;
Fritz, Mario ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :59-68
[2]   Label-Embedding for Image Classification [J].
Akata, Zeynep ;
Perronnin, Florent ;
Harchaoui, Zaid ;
Schmid, Cordelia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) :1425-1438
[3]  
Akata Z, 2015, PROC CVPR IEEE, P2927, DOI 10.1109/CVPR.2015.7298911
[4]   Recovering the Missing Link: Predicting Class-Attribute Associations for Unsupervised Zero-Shot Learning [J].
Al-Halah, Ziad ;
Tapaswi, Makarand ;
Stiefelhagen, Rainer .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5975-5984
[5]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.649
[6]  
[Anonymous], 2016, ICML, DOI DOI 10.1186/S13660-016-0988-1
[7]  
[Anonymous], 2015, PROC CVPR IEEE
[8]   Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Sha, Fei .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3496-3505
[9]   Synthesized Classifiers for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Gong, Boqing ;
Sha, Fei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5327-5336
[10]   Deep Cross-Modality Adaptation via Semantics Preserving Adversarial Learning for Sketch-Based 3D Shape Retrieval [J].
Chen, Jiaxin ;
Fang, Yi .
COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 :624-640