Geometric optimization of T-shaped constructs coupled with a heat generating basement: A numerical approach motivated by Bejan's constructal theory

被引:10
作者
Lorenzini, G. [1 ]
Biserni, C. [2 ]
Dalpiaz, F. L. [3 ]
Fagundes, T. M. [3 ]
Rocha, L. A. O. [4 ]
机构
[1] Univ Parma, Dipartimento Ingn & Architettura, Parco Area Sci 181-A, I-43124 Parma, Italy
[2] Univ Bologna, Dipartimento Ingn Ind, Viale Risorgimento 2, I-40136 Bologna, Italy
[3] Univ Fed Rio Grande do Sul, Programa Posgrad Engn Mecan, Rua Sarmento Leite 425, BR-90050170 Porto Alegre, RS, Brazil
[4] Univ Fed Rio Grande do Sul, Dept Mech Engn, Rua Sarmento Leite 425, BR-90050170 Porto Alegre, RS, Brazil
关键词
COOLING CHANNELS; DESIGN; FINS; ECONOMICS; NETWORK; ROOTS; PATHS;
D O I
10.1134/S1810232817040051
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work relies on constructal design to perform the geometric optimization of morphing T-shaped fins that remove a constant heat generation rate from a rectangular basement. The fins are bathed by a steady stream with constant ambient temperature and convective heat transfer. The body that serves as a basement for the T-shaped construct generates heat uniformly and it is perfectly insulated on the outer perimeter. It is shown numerically that the global dimensionless thermal resistance of the T-shaped construct can be minimized by geometric optimization subjected to constraints, namely, the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary area fraction constraint, i.e., the ratio between the area that circumscribes the T-shaped fin and the basement area. The optimal design proved to be dependent on the degrees of freedom (L-1/L-0, t(1)/t(0), H/L): first achieved results indicate that when the geometry is free to morph then the thermal performance is improved according to the constructal principle named by Bejan "optimal distribution of imperfections.".
引用
收藏
页码:485 / 497
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 2009, INT J DES NAT ECODYN, DOI DOI 10.2495/DNE-V4-N4-386-394
[2]  
[Anonymous], 2000, MATLAB US GUID VERS
[3]   Economic optimization of shell and tube heat exchanger based on constructal theory [J].
Azad, Abazar Vandat ;
Amidpour, Majid .
ENERGY, 2011, 36 (02) :1087-1096
[5]   Unifying constructal theory of tree roots, canopies and forests [J].
Bejan, A. ;
Lorente, S. ;
Lee, J. .
JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (03) :529-540
[6]   The constructal law origin of the logistics S curve [J].
Bejan, A. ;
Lorente, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (02)
[7]   Constructal theory of economics [J].
Bejan, A ;
Badescu, V ;
De Vos, A .
APPLIED ENERGY, 2000, 67 (1-2) :37-60
[8]   Constructal T-shaped fins [J].
Bejan, A ;
Almogbel, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (12) :2101-2115
[9]   Constructal theory of economics structure generation in space and time [J].
Bejan, A ;
Badescu, V ;
De Vos, A .
ENERGY CONVERSION AND MANAGEMENT, 2000, 41 (13) :1429-1451
[10]  
Bejan A., 2007, INT J DESIGN NATURE, V2, P319