An Exact Feature Selection Algorithm Based on Rough Set Theory

被引:8
|
作者
Rezvan, Mohammad Taghi [1 ]
Hamadani, Ali Zeinal [1 ]
Hejazi, Seyed Reza [1 ]
机构
[1] Isfahan Univ Technol, Dept Ind Engn, Esfahan 8415683111, Iran
关键词
rough set; feature selection; solution tree; monotonic property; REDUCTION; TRIE;
D O I
10.1002/cplx.21526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Feature reduction based on rough set theory is an effective feature selection method in pattern recognition applications. Finding a minimal subset of the original features is inherent in rough set approach to feature selection. As feature reduction is a Nondeterministic Polynomial-time-hard problem, it is necessary to develop fast optimal or near-optimal feature selection algorithms. This article aims to propose an exact feature selection algorithm in rough set that is efficient in terms of computation time. The proposed algorithm begins the examination of a solution tree by a breadth-first strategy. The pruned nodes are held in a version of the trie data structure. Based on the monotonic property of dependency degree, all subsets of the pruned nodes cannot be optimal solutions. Thus, by detecting these subsets in trie, it is not necessary to calculate their dependency degree. The search on the tree continues until the optimal solution is found. This algorithm is improved by selecting an initial search level determined by the hill-climbing method instead of searching the tree from the level below the root. The length of the minimal reduct and the size of data set can influence which starting search level is more efficient. The experimental results using some of the standard UCI data sets, demonstrate that the proposed algorithm is effective and efficient for data sets with more than 30 features. (c) 2014 Wiley Periodicals, Inc. Complexity 20: 50-62, 2015
引用
收藏
页码:50 / 62
页数:13
相关论文
共 50 条
  • [31] Application of rough set theory to feature selection for unsupervised clustering
    Questier, F
    Arnaut-Rollier, I
    Walczak, B
    Massart, DL
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2002, 63 (02) : 155 - 167
  • [32] A Study on Feature Subset Selection Using Rough Set Theory
    Han, Jianchao
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2012, 1 (02) : 239 - 249
  • [33] Feature Selection for Medical Dataset Using Rough Set Theory
    Wang, Yan
    Ma, Lizhuang
    CEA'09: PROCEEDINGS OF THE 3RD WSEAS INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS, 2009, : 68 - +
  • [34] In-Database Feature Selection Using Rough Set Theory
    Beer, Frank
    Buehler, Ulrich
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II, 2016, 611 : 393 - 407
  • [35] A feature selection technique based on rough set and improvised PSO algorithm (PSORS-FS) for permission based detection of Android malwares
    Bhattacharya, Abhishek
    Goswami, Radha Tamal
    Mukherjee, Kuntal
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (07) : 1893 - 1907
  • [36] An Efficient Gaussian Kernel Based Fuzzy-Rough Set Approach for Feature Selection
    Ghosh, Soumen
    Prasad, P. S. V. S. Sai
    Rao, C. Raghavendra
    MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, (MIWAI 2016), 2016, 10053 : 38 - 49
  • [37] Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model
    Yao S.
    Xu F.
    Zhao P.
    Ji X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (04): : 802 - 814
  • [38] Feature selection based on rough set and information entropy
    Han, JC
    2005 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2005, : 153 - 158
  • [39] An Approach to Feature Selection Based on Ant Colony Optimization and Rough Set
    Wu, Junyun
    Qiu, Taorong
    Wang, Lu
    Huang, Haiquan
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 466 - 471
  • [40] On the use of evolutionary feature selection for improving fuzzy rough set based prototype selection
    Derrac, J.
    Verbiest, N.
    Garcia, S.
    Cornelis, C.
    Herrera, F.
    SOFT COMPUTING, 2013, 17 (02) : 223 - 238