Structure theorem for multiple addition and the Frobenius problem

被引:44
作者
Lev, VF [1 ]
机构
[1] TEL AVIV UNIV,SACKLER FAC EXACT SCI,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1006/jnth.1996.0065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A subset of or equal to [0; l] be a set of n integers, and let h greater than or equal to 2. By how much does \hA\ exceed \(h-1)A\? How can one estimate \hA\ in terms of n, l? We give sharp lower bounds extending and generalizing the well-known theorem of Freiman for \2A\. A number of applications are provided as well. In particular, we give a solution for the old extremal problem of Frobenius-Erdos-Graham concerning estimating of the largest integer, non-representable by a linear form. In a sense, our solution can not be improved. (C) 1996 Academic Press, Inc.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 7 条
  • [1] Erdos P., 1972, ACTA ARITH, V21, P399
  • [2] Freiman G. A., 1973, MATH MONOGRAPHS, V37
  • [3] FREIMAN GA, 1992, C MATH SOC JANOS BOL, V60
  • [4] Kneser M., 1953, MATH Z, V58, P459, DOI 10.1007/BF01174162
  • [5] Kneser M, 1955, MATH Z, V61, P429
  • [6] On the extremal aspect of the Frobenius problem
    Lev, VF
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 73 (01) : 111 - 119
  • [7] LEV VF, 1995, ACTA ARITH, P85