FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH DILATION AND SYMMETRY

被引:2
作者
Rossovskii, L. E. [1 ]
Tovsultanov, A. A. [2 ]
机构
[1] Peoples Friendship Univ Russia, Moscow, Russia
[2] Kadyrov Chechen State Univ, Grozny, Russia
关键词
elliptic functional-differential equation; boundary value problem; Garding-type inequality; BOUNDARY-VALUE PROBLEM;
D O I
10.1134/S0037446622040164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the Dirichlet problem in a bounded plane domain for a strongly elliptic functional-differential equation of the second order containing the argument transformations x bar right arrow px (p > 0) and x bar right arrow -x in higher-order derivatives. The study of solvability of the problem relies on a Garding-type inequality for which some necessary and sufficient conditions are obtained in algebraic form.
引用
收藏
页码:758 / 768
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2014, SOVREM MAT FUNDAM NA
[2]  
[Anonymous], 1944, DOKL AKAD NAUK SSSR
[3]  
[Anonymous], 1991, Functional Analysis
[4]  
[Anonymous], 1999, P ST PETERSBURG MATH
[5]   SPECTRAL METHODS IN THE THEORY OF DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
DERFEL, GA ;
MOLCHANOV, SA .
MATHEMATICAL NOTES, 1990, 47 (3-4) :254-260
[6]   AN ABSORPTION PROBABILITY PROBLEM [J].
GAVER, DP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1964, 9 (03) :384-&
[7]   A FUNCTIONAL-DIFFERENTIAL EQUATION ARISING IN MODELING OF CELL-GROWTH [J].
HALL, AJ ;
WAKE, GC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1989, 30 :424-435
[8]   On neutral functional-differential equations with proportional delays [J].
Iserles, A ;
Liu, YK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 207 (01) :73-95
[9]  
KATO T, 1971, B AM MATH SOC, V77, P891
[10]  
Mahler K., 1940, J. Lond. Math. Soc, V15, P115