Parameter identification of first order time-delay chaotic system

被引:5
|
作者
Peng Hai-Peng [1 ]
Li Li-Xiang
Yang Yi-Xian
Zhang Xiao-Hong
Gao Yang
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Informat Secur Ctr, Beijing 100876, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou 341000, Peoples R China
关键词
time-delay chaotic system; parameter identification; nonlinear gain function;
D O I
10.7498/aps.56.6245
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It' s of vital importance to estimate the unknown parameters of chaotic systems in chaos control and synchronization. Nonlinear observer is used to investigate the problem of parameter identification for two different types of time-delay chaotic systems. The unknown parameter is regarded as the unknown state of the chaotic system. Based on the theory of nonlinear state observer, by selecting suitable nonlinear gain function in observer, which makes the closed-loop error system globally exponentially stable or approximately stable, a sufficient condition for existence of parameter estimator is presented. A numerical simulation on the well-known time-delay logistic system is conducted. Simulation results show that the proposed method is effective for parameter estimation of the time-delay chaotic system.
引用
收藏
页码:6245 / 6249
页数:5
相关论文
共 17 条
  • [1] CHEN DH, 1997, ADV ENV SCI, V5, P29
  • [2] Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification
    Chen, SH
    Hu, J
    Wang, CP
    Lü, JH
    [J]. PHYSICS LETTERS A, 2004, 321 (01) : 50 - 55
  • [3] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, D
    Ma, XK
    Li, FC
    You, Y
    [J]. ACTA PHYSICA SINICA, 2002, 51 (11) : 2459 - 2462
  • [4] FARMER JD, 1982, PHYSICA D, V4, P366, DOI 10.1016/0167-2789(82)90042-2
  • [5] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    [J]. ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [6] Parameters identification and control of Lorenz chaotic system
    Guan, XP
    Peng, HP
    Li, LX
    Wang, YQ
    [J]. ACTA PHYSICA SINICA, 2001, 50 (01) : 26 - 29
  • [7] On feedback control of delayed chaotic system
    Li, L
    Peng, HP
    Lu, HB
    Guan, XP
    [J]. CHINESE PHYSICS, 2001, 10 (09): : 796 - 804
  • [8] Parameters identification of chaotic systems via chaotic ant swarm
    Li, LX
    Yang, YX
    Peng, HP
    Wang, XD
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (05) : 1204 - 1211
  • [9] Comment on two papers of chaotic synchronization
    Li, LX
    Peng, HP
    Wang, XD
    Yang, YX
    [J]. PHYSICS LETTERS A, 2004, 333 (3-4) : 269 - 270
  • [10] Chaotic behavior in first-order autonomous continuous-time systems with delay
    Lu, HT
    He, ZY
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (08): : 700 - 702