Multiple scattering of flexural waves by random configurations of inclusions in thin plates

被引:21
作者
Parnell, W. J. [1 ]
Martin, P. A. [2 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
关键词
Flexural waves; Inhomogeneous plate; Multiple scattering; Effective wavenumber; CYLINDERS; NUMBER;
D O I
10.1016/j.wavemoti.2010.10.004
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Flexural waves are scattered by inclusions in a thin plate. For a single inclusion of arbitrary shape, reciprocity relations are obtained connecting coefficients in circular multipole expansions. Then, a formula for the effective wavenumber in a random arrangement of identical circular inclusions is derived, using the Lax quasi-crystalline approximation. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 175
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1973, ASME J APPL MECH, DOI [DOI 10.1115/1.3423178, 10.1115/1.3423178]
[2]  
[Anonymous], 2005, MULTIPLE SCATTERING
[3]   SCATTERING OF FLEXURAL WAVES BY RANDOM DENSITY-FLUCTUATIONS IN A PLATE [J].
BERAN, MJ .
WAVES IN RANDOM MEDIA, 1994, 4 (03) :221-232
[4]  
Bergman S., 2005, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, V1st
[5]  
Bose S. K., 1973, International Journal of Solids and Structures, V9, P1075, DOI 10.1016/0020-7683(73)90016-4
[6]   CAPILLARY WAVE SCATTERING FROM A SURFACTANT DOMAIN [J].
CHOU, T ;
LUCAS, SK ;
STONE, HA .
PHYSICS OF FLUIDS, 1995, 7 (08) :1872-1885
[7]   Effective wavenumbers and reflection coefficients for an elastic medium containing random configurations of cylindrical scatterers [J].
Conoir, Jean-Marc ;
Norris, Andrew N. .
WAVE MOTION, 2010, 47 (03) :183-197
[8]   Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium [J].
Derode, Arnaud ;
Mamou, Victor ;
Tourin, Arnaud .
PHYSICAL REVIEW E, 2006, 74 (03)
[9]   Energy transport velocity of flexural waves in a random medium [J].
Dixon, TW ;
Squire, VA .
WAVES IN RANDOM MEDIA, 2000, 10 (01) :83-102
[10]  
Evans DV, 2007, J ENG MATH, V58, P317, DOI 10.1007/S10665-006-9128-0