Using multi-omics methods to understand dermatomyositis/polymyositis

被引:43
|
作者
Gao, Siming [1 ]
Luo, Hui [1 ]
Zhang, Huali [2 ]
Zuo, Xiaoxia [1 ]
Wang, Li [2 ]
Zhu, Honglin [1 ]
机构
[1] Cent S Univ, Xiangya Hosp, Dept Rheumatol, 87 Xiangya Rd, Changsha 410008, Hunan, Peoples R China
[2] Cent S Univ, Xiangya Sch Med, Dept Pathophysiol, 110 Xiangya Rd, Changsha 410008, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Dermatomyositis; Polymyositis; Pathogenesis; Multi-omics; IDIOPATHIC INFLAMMATORY MYOPATHY; SIGNAL RECOGNITION PARTICLE; INDUCIBLE GENE-EXPRESSION; INTERSTITIAL LUNG-DISEASE; GENOME-WIDE ASSOCIATION; TRANSFER-RNA-SYNTHETASE; DISTINCT HLA-A; PROTECTIVE FACTORS; ALLELIC PROFILES; MYOSITIS AUTOANTIBODIES;
D O I
10.1016/j.autrev.2017.07.021
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Idiopathic inflammatory myopathies (IIM) are a group of rare and heterogeneous autoimmune diseases, and the most common subtypes are dermatomyositis (DM) and polymyositis (PM). Despite extensive efforts, the underlying mechanism of IIM remains unclear. Recent efforts to understand the pathogenesis of IIM have included genomics, epigenetics, transcriptomics, proteomics and autoantibody studies. This review focuses on recent studies in DM/PM research based on multi-omics. This integrated analysis of multi-omics profiling will provide useful in-sights into DM/PM pathogenesis and recommendations for therapeutic targets and biomarkers development (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1044 / 1048
页数:5
相关论文
共 50 条
  • [1] A multi-omics approach to understand the underlying mechanisms of obesity
    Niu, J.
    Gieger, C.
    Peters, A.
    Sharma, S.
    Grallert, H.
    DIABETOLOGIA, 2024, 67 : S108 - S108
  • [2] Polishing the crystal ball: mining multi-omics data in dermatomyositis
    Castillo, Rochelle L.
    Femia, Alisa N.
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (05)
  • [3] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [4] Identification of Secondary Metabolites by Multi-Omics Methods
    Fang, Xin
    METABOLITES, 2024, 14 (11)
  • [5] Predicting childhood allergy using machine learning methods on multi-omics data
    van Breugel, Merlijn
    Qi, Cancan
    Jiang, Yale
    Pedersen, Casper-Emil Tingskov
    Pethoukhov, Ilya
    Vonk, Judith
    Gehring, Ulrike
    Berg, Marijn
    Bugel, Marnix
    Capraij, Orestes
    Forno, Erick
    Morin, Andreanne
    Eliasen, Anders Ulrik
    Xu, Zhongli
    Van Den Berge, Maarten
    Nawijn, Martijn
    Li, Yang
    Chen, Wei
    Bont, Louis
    Bonnelykke, Klaus
    Celedon, Juan
    Koppelman, Gerard
    Xu, Cheng-Jian
    EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [6] Methods for the integration of multi-omics data: mathematical aspects
    Matteo Bersanelli
    Ettore Mosca
    Daniel Remondini
    Enrico Giampieri
    Claudia Sala
    Gastone Castellani
    Luciano Milanesi
    BMC Bioinformatics, 17
  • [7] Methods for the integration of multi-omics data: mathematical aspects
    Bersanelli, Matteo
    Mosca, Ettore
    Remondini, Daniel
    Giampieri, Enrico
    Sala, Claudia
    Castellani, Gastone
    Milanesi, Luciano
    BMC BIOINFORMATICS, 2016, 17
  • [8] Consistency and overfitting of multi-omics methods on experimental data
    McCabe, Sean D.
    Lin, Dan-Yu
    Love, Michael, I
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1277 - 1284
  • [9] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [10] Are multi-omics enough?
    Cristina Vilanova
    Manuel Porcar
    Nature Microbiology, 1 (8)