Where is the hydrodynamic limit?

被引:6
作者
Hansen, J. S. [1 ]
机构
[1] Roskilde Univ, Dept Sci & Environm, IMFUFA, Glass & Time, Roskilde, Denmark
关键词
MOLECULAR-DYNAMICS; TRANSPORT-COEFFICIENTS; FORCE-FIELD; SIMULATIONS; FLOW;
D O I
10.1080/08927022.2021.1975038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the classical hydrodynamic theory is compared to molecular dynamics simulation data using two different dynamical modes, namely, the transverse and longitudinal modes. The comparison is based on the dynamics of the equilibrium fluctuations for four different systems, the Lennard-Jones system, model liquids for butane, toluene, and water. Using an error estimator limit of 1%, it is found that for the transverse dynamics the classical hydrodynamic theory holds down to 5-14 nm depending on the fluidic system. For the longitudinal dynamics, this characteristic length scale is approximately doubled. From the dispersion relations, it is furthermore concluded that classical hydrodynamics qualitatively accounts for the dominating processes at even lower length scales.
引用
收藏
页码:1391 / 1401
页数:11
相关论文
共 52 条
[1]  
Allen M.P., 1989, Computer Simulation of Liquids
[2]   GENERALIZED TRANSPORT-COEFFICIENTS FOR HARD-SPHERES [J].
ALLEY, WE ;
ALDER, BJ .
PHYSICAL REVIEW A, 1983, 27 (06) :3158-3173
[3]   CONFORMATIONAL-ANALYSIS .130. MM2 - HYDROCARBON FORCE-FIELD UTILIZING V1 AND V2 TORSIONAL TERMS [J].
ALLINGER, NL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (25) :8127-8134
[4]   RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles [J].
Bailey, Nicholas P. ;
Ingebrigtsen, Trond S. ;
Hansen, Jesper Schmidt ;
Veldhorst, Arno A. ;
Bohling, Lasse ;
Lemarchand, Claire A. ;
Olsen, Andreas E. ;
Bacher, Andreas K. ;
Costigliola, Lorenzo ;
Pedersen, Ulf R. ;
Larsen, Heine ;
Dyre, Jeppe C. ;
Schroder, Thomas B. .
SCIPOST PHYSICS, 2017, 3 (06)
[5]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[6]  
Batchelor GK., 1967, An Introduction to Fluid Dynamics
[7]   HYDRODYNAMIC BOUNDARY-CONDITIONS, CORRELATION-FUNCTIONS, AND KUBO RELATIONS FOR CONFINED FLUIDS [J].
BOCQUET, L ;
BARRAT, JL .
PHYSICAL REVIEW E, 1994, 49 (04) :3079-3092
[8]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[9]   COLLECTIVE DYNAMICS IN LIQUID CESIUM NEAR THE MELTING-POINT [J].
BODENSTEINER, T ;
MORKEL, C ;
GLASER, W ;
DORNER, B .
PHYSICAL REVIEW A, 1992, 45 (08) :5709-5720
[10]   Electrohydraulic Power Conversion in Planar Nanochannels [J].
Bonthuis, Douwe Jan ;
Horinek, Dominik ;
Bocquet, Lyderic ;
Netz, Roland R. .
PHYSICAL REVIEW LETTERS, 2009, 103 (14)