Survey of Learning Based Single Image Super-Resolution Reconstruction Technology

被引:8
|
作者
Bai, K. [1 ]
Liao, X. [1 ]
Zhang, Q. [1 ]
Jia, X. [1 ]
Liu, S. [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
super resolution; image reconstruction; locally linear embedding; sparse representation; deep learning; CONVOLUTIONAL NETWORK;
D O I
10.1134/S1054661820040045
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the development of information technology, there is a high demand for high-resolution images. Image super-resolution reconstruction technology is to estimate a high-resolution image with better quality from one or a sequence of low-resolution images, with the help of signal processing technology. The core idea is to integrate useful information with strong correlations and complementarities from single image or multiple images as desired. Learning based single image super-resolution reconstruction technology is the current research hotspot. The paper systematically overviews this technology and discuss some main categories of it, such as super-resolution reconstruction based on neighbors, based on sparse representation, based on deep learning. At the end of the paper, challenge issues and future research directions for super-resolution image reconstruction are put forward.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 50 条
  • [11] A review of single image super-resolution reconstruction based on deep learning
    Yu, Ming
    Shi, Jiecong
    Xue, Cuihong
    Hao, Xiaoke
    Yan, Gang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55921 - 55962
  • [12] A review of single image super-resolution reconstruction based on deep learning
    Ming Yu
    Jiecong Shi
    Cuihong Xue
    Xiaoke Hao
    Gang Yan
    Multimedia Tools and Applications, 2024, 83 : 55921 - 55962
  • [13] A Survey of Image Super-Resolution Reconstruction
    Tang Y.-Q.
    Pan H.
    Zhu Y.-P.
    Li X.-D.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1407 - 1420
  • [14] Medical image super-resolution reconstruction algorithms based on deep learning: A survey
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
  • [15] Research Progress of Single Image Super-resolution Reconstruction Technology
    Zhang, Fang
    Zhao, Dong-Xu
    Xiao, Zhi-Tao
    Geng, Lei
    Wu, Jun
    Liu, Yan-Bei
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (11): : 2634 - 2654
  • [16] A Single Image Super-Resolution Reconstruction Based on Fusion
    Su Jin-sheng
    Zhang Ming-jun
    Yu Wen-jing
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [17] Single Image Super-resolution Reconstruction with Wavelet based Deep Residual Learning
    Dou, Jianfang
    Tu, Zimei
    Peng, Xishuai
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4270 - 4275
  • [18] A Review of Single Image Super-resolution Reconstruction Algorithms Based on Deep Learning
    Li J.-X.
    Zhao Y.-X.
    Wang J.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (10): : 2341 - 2363
  • [19] Single Image Super-resolution Based on Residual Learning
    Xie, Chao
    Lu, Xiaobo
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 124 - 129
  • [20] Single Image Super-Resolution Reconstruction based on the ResNeXt Network
    Fangzhe Nan
    Qingliang Zeng
    Yanni Xing
    Yurong Qian
    Multimedia Tools and Applications, 2020, 79 : 34459 - 34470