Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach

被引:94
作者
Avendi, Michael R. [1 ,2 ,3 ]
Kheradvar, Arash [1 ,2 ]
Jafarkhani, Hamid [3 ]
机构
[1] Univ Calif Irvine, Edwards Lifesci Ctr Adv Cardiovasc Technol, Irvine, CA USA
[2] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA USA
[3] Univ Calif Irvine, Ctr Pervas Commun & Comp, 4217 Engn Hall, Irvine, CA 92697 USA
关键词
cardiac MRI; right ventricle; segmentation; deep learning; deformable models; MODEL; REGISTRATION;
D O I
10.1002/mrm.26631
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThis study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. MethodsThe proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). ResultsAn average Dice metric of 82.5% along with an average Hausdorff distance of 7.85mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. ConclusionOur results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine.
引用
收藏
页码:2439 / 2448
页数:10
相关论文
共 45 条
  • [1] [Anonymous], 2016, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [2] A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI
    Avendi, M. R.
    Kheradvar, Arash
    Jafarkhani, Hamid
    [J]. MEDICAL IMAGE ANALYSIS, 2016, 30 : 108 - 119
  • [3] A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images
    Bai, Wenjia
    Shi, Wenzhe
    O'Regan, Declan P.
    Tong, Tong
    Wang, Haiyan
    Jamil-Copley, Shahnaz
    Peters, Nicholas S.
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (07) : 1302 - 1315
  • [4] Baldi P., 2012, P ICML WORKSH UNS TR, V27, P37, DOI DOI 10.1561/2200000006
  • [5] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [6] Learning Deep Architectures for AI
    Bengio, Yoshua
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01): : 1 - 127
  • [7] Assessment of right ventricle volumes and function by cardiac MRI: Quantification of the regional and global interobserver variability
    Bonnemains, Laurent
    Mandry, Damien
    Marie, Pierre-Yves
    Micard, Emilien
    Chen, Bailiang
    Vuissoz, Pierre-Andre
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (06) : 1740 - 1746
  • [8] Cardiac MRI Assessment of Right Ventricular Function in Acquired Heart Disease:Factors of Variability
    Caudron, Jerome
    Fares, Jeannette
    Lefebvre, Valentin
    Vivier, Pierre-Hugues
    Petitjean, Caroline
    Dacher, Jean-Nicolas
    [J]. ACADEMIC RADIOLOGY, 2012, 19 (08) : 991 - 1002
  • [9] Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease
    Caudron, Jerome
    Fares, Jeannette
    Vivier, Pierre-Hugues
    Lefebvre, Valentin
    Petitjean, Caroline
    Dacher, Jean-Nicolas
    [J]. EUROPEAN RADIOLOGY, 2011, 21 (10) : 2111 - 2120
  • [10] Deng L., 2014, FOND T SIGN PROC, V7, P197, DOI DOI 10.1561/2000000039