A New Variant of Wilson's Functional Equation on Monoids

被引:0
作者
Dimou, Hajira [1 ]
Elqorachi, Elhoucien [2 ]
Chahbi, Abdellatif [2 ]
机构
[1] Ibn Zohr Univ, Fac Appl Sci, Lab EEFA, Agadir, Morocco
[2] Ibn Zohr Univ, Fac Sci, Dept Math, Lab EEFA, Agadir, Morocco
关键词
Monoid; functional equation; d'Alembert's equation; involutive automorphism; multiplicative function; anti-automorphism;
D O I
10.1007/s10114-022-1233-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find on a monoid M the complex-valued solutions f, g : M -> C such that f is central and g is continuous of the functional equation f(x sigma(y))+ f(tau(y)x) = 2f (x)g(y), x, y is an element of M, where sigma : M -> M is an involutive automorphism and tau : M -> M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M.
引用
收藏
页码:1303 / 1316
页数:14
相关论文
共 27 条
[1]  
Aczel J., 1989, Encycl. Math. Appl., V31
[2]   A class of functional equations on a locally compact group [J].
Akkouchi, M ;
Bakali, A ;
Khalil, I .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 :694-705
[3]   Wilson's functional equation with an anti-endomorphism [J].
Ayoubi, M. ;
Zeglami, D. ;
Aissi, Y. .
AEQUATIONES MATHEMATICAE, 2021, 95 (03) :535-549
[4]   A GENERALIZATION OF THE SYMMETRIZED MULTIPLICATIVE CAUCHY EQUATION [J].
Chahbi, A. ;
Fadli, B. ;
Kabbaj, S. .
ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) :170-176
[5]   A Variant of d'Alembert Functional Equation on Monoids [J].
Chahbi, Abdellatif ;
Elqorachi, Elhoucien .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) :1127-1142
[6]  
D'Alembert J., 1750, HIST ACAD BERLIN, V6, P355
[7]  
Davison TMK, 2009, PUBL MATH-DEBRECEN, V75, P41
[8]  
Dimou H., 2021, PALESTINE J MATH, V10, P432
[9]  
Dimou Hajira, 2019, Proyecciones (Antofagasta), V38, P943, DOI 10.22199/issn.0717-6279-2019-05-0060
[10]   Some trigonometric functional equations on monoids generated by their squares [J].
Ebanks, Bruce .
AEQUATIONES MATHEMATICAE, 2021, 95 (02) :383-391