Memetic salp swarm optimization algorithm based feature selection approach for crop disease detection system

被引:31
作者
Jain, Sonal [1 ]
Dharavath, Ramesh [1 ]
机构
[1] Indian Inst Technol ISM, Dept Comp Sci & Engn, Dhanbad 826004, Jharkhand, India
关键词
Feature selection; Crop disease classification; Salp swarm algorithm (SSA); Binary salp swarm algorithm (BSSA); Memetic salp swarm optimization algorithm (MSSOA); Image processing; ROUGH SETS; CLASSIFICATION; AGRICULTURE;
D O I
10.1007/s12652-021-03406-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The detection of disease development in plants becomes very crucial because of its adverse effect on the quality and productivity of agriculture. The automatic disease detection in plants using image processing and machine learning is beneficial due to its fast computing and practicability for continuous monitoring of a large farm. This paper presents an automatic disease detection system using image segmentation, feature extraction, optimization, and classification algorithms. This paper proposes a memetic salp swarm optimization algorithm (MSSOA), which is transformed into binary MSSOA to search for the optimal number of features that give the best classification accuracy. The performance of the proposed algorithm for feature selection is compared with five metaheuristic feature selection (BSSA, BPSO, BMFO, BCOA, IBHHO) algorithms against the UCI benchmark datasets. The obtained results indicate the proposed algorithm outperforms the other algorithms in obtaining good classification accuracy and reducing the feature size. The proposed algorithm is implemented for automatic disease detection of maize, rice, and grape plant and achieved a classification accuracy of 90.6%, 67.9%, and 91.6% and best classification accuracy of 93.6%, 79.1%, and 95%, respectively.
引用
收藏
页码:1817 / 1835
页数:19
相关论文
共 57 条
[1]   ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network [J].
Agarwal, Mohit ;
Singh, Abhishek ;
Arjaria, Siddhartha ;
Sinha, Amit ;
Gupta, Suneet .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 :293-301
[2]   Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification [J].
Arnal Barbedo, Jayme Garcia .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 153 :46-53
[3]  
Bandi S. R., 2013, INT J ENG SCI TECHNO, V5, P298
[4]   Identifying multiple plant diseases using digital image processing [J].
Barbedo, Jayme Garcia Arnal ;
Koenigkan, Luciano Vieira ;
Santos, Thiago Teixeira .
BIOSYSTEMS ENGINEERING, 2016, 147 :104-116
[5]   Image pattern classification for the identification of disease causing agents in plants [J].
Camargo, A. ;
Smith, J. S. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2009, 66 (02) :121-125
[6]   Rough set-aided keyword reduction for text categorization [J].
Chouchoulas, A ;
Shen, Q .
APPLIED ARTIFICIAL INTELLIGENCE, 2001, 15 (09) :843-873
[7]   An analysis of co-occurrence texture statistics as a function of grey level quantization [J].
Clausi, DA .
CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) :45-62
[8]  
Dietterich TG, 1994, J ARTIF INTELL RES, V2, P263
[9]  
Dong P.X., 2013, OPEN J APPL SCI, V3, P27, DOI [10.4236/ojapps.2013.31B006, DOI 10.4236/OJAPPS.2013.31B006]
[10]   Binary ant lion approaches for feature selection [J].
Emary, E. ;
Zawbaa, Hossam M. ;
Hassanien, Aboul Ella .
NEUROCOMPUTING, 2016, 213 :54-65