A parametric study of electrodes geometries for atmospheric electrohydrodynamic propulsion

被引:18
作者
Belan, Marco [1 ]
Arosti, Luca [1 ]
Polatti, Riccardo [1 ]
Maggi, Filippo [1 ]
Fiorini, Samuele [2 ]
Sottovia, Federico [2 ]
机构
[1] Politecn Milan, Dipartimento Sci & Tecnol Aerosp, I-20156 Milan, Italy
[2] SF2, I-37045 Legnago, VR, Italy
关键词
Corona discharge; Atmospheric EHD propulsion; Corona electrodes; FLOW;
D O I
10.1016/j.elstat.2021.103616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a parametric analysis of corona thrusters performance as function of electrodes geometry, focusing on collector electrodes. A set of airfoil-shaped collectors with fixed chord and different profiles is tested on a propulsion system at bench. The setup consists in a parallel array of thruster units with adjustable spacing. The downstream velocity field is measured and used to determine thrust by momentum balance. Thrust-to-power ratio and thrust density are calculated as performance parameters to compare the different geometries. Optimal configurations are found within the examined parameter space, evidencing the importance of further systematic studies about the electrodes geometries.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
Canning F., 2004, 2004213312 NASA CR
[2]   Electrohydrodynamic thrust density using positive corona-induced ionic winds for in-atmosphere propulsion [J].
Gilmore, Christopher K. ;
Barrett, Steven R. H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175)
[3]   Electrohydrodynamic propeller for in-atmosphere propulsion; rotational device first flight [J].
Ieta, Adrian ;
Chirita, Marius .
JOURNAL OF ELECTROSTATICS, 2019, 100
[4]   In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells [J].
Jean, Joel ;
Wang, Annie ;
Bulovic, Vladimir .
ORGANIC ELECTRONICS, 2016, 31 :120-126
[5]   Analysis and Design of Fuel Cell Systems for Aviation [J].
Kadyk, Thomas ;
Winnefeld, Christopher ;
Hanke-Rauschenbach, Richard ;
Krewer, Ulrike .
ENERGIES, 2018, 11 (02)
[6]   Electrohydrodynamic thruster for near-space applications [J].
Khomich, V. Yu ;
Malanichev, V. E. ;
Rebrov, I. E. .
ACTA ASTRONAUTICA, 2021, 180 :141-148
[7]   In-atmosphere electrohydrodynamic propulsion aircraft with wireless supply onboard [J].
Khomich, Vladislav Yu ;
Rebrov, Igor E. .
JOURNAL OF ELECTROSTATICS, 2018, 95 :1-12
[8]   A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques [J].
Kim, Hee-Je ;
Krishna, T. N., V ;
Zeb, Kamran ;
Rajangam, Vinodh ;
Gopi, Chandu V. V. Muralee ;
Sambasivam, Sangaraju ;
Raghavendra, Kummara Venkata Guru ;
Obaidat, Ihab M. .
ELECTRONICS, 2020, 9 (07) :1-44
[9]   Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion [J].
Martins, Alexandre A. ;
Pinheiro, Mario J. .
JOURNAL OF ELECTROSTATICS, 2011, 69 (02) :133-138
[10]   On the performance of electrohydrodynamic propulsion [J].
Masuyama, Kento ;
Barrett, Steven R. H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154)