The span of one-dimensional multiparticle Brownian motion

被引:14
作者
Sastry, GM [1 ]
Agmon, N [1 ]
机构
[1] HEBREW UNIV JERUSALEM,FRITZ HABER RES CTR,IL-91904 JERUSALEM,ISRAEL
关键词
D O I
10.1063/1.471069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A closed-form expression is obtained for the time evolution of the territory covered by N independently diffusing particles starting from the origin in one-dimension, with and without bias. For the latter case, the transcendental-approximation derived is essentially exact for any number of particles. (C) 1996 American Institute of Physics.
引用
收藏
页码:3022 / 3025
页数:4
相关论文
共 13 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[3]   VOLUME OF THE DOMAIN VISITED BY N-SPHERICAL BROWNIAN PARTICLES [J].
BEREZHKOVSKII, AM .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (3-4) :1089-1097
[4]  
BEREZHKOVSKII AM, UNPUB
[5]  
Carslaw H. S., 1959, CONDUCTION HEAT SOLI
[6]   NUMBER OF DISTINCT SITES VISITED BY A RANDOM WALKER IN THE PRESENCE OF A TRAP [J].
DAYAN, I ;
HAVLIN, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09) :L549-L553
[7]   NUMBER OF DISTINCT SITES VISITED BY N-RANDOM WALKERS [J].
LARRALDE, H ;
TRUNFIO, P ;
HAVLIN, S ;
STANLEY, HE ;
WEISS, GH .
PHYSICAL REVIEW A, 1992, 45 (10) :7128-7138
[8]   TERRITORY COVERED BY N DIFFUSING PARTICLES [J].
LARRALDE, H ;
TRUNFIO, P ;
HAVLIN, S ;
STANLEY, HE ;
WEISS, GH .
NATURE, 1992, 355 (6359) :423-426
[9]   EXPECTED NUMBER OF SITES VISITED BY A CONSTRAINED N-STEP RANDOM-WALK [J].
LARRALDE, H ;
WEISS, GH .
PHYSICAL REVIEW E, 1995, 52 (02) :1313-1317
[10]   THE EXPECTED NUMBER OF DISTINCT SITES VISITED BY N-BIASED RANDOM-WALKS IN ONE-DIMENSION [J].
LARRALDE, H ;
WEISS, GH ;
STANLEY, HE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 209 (3-4) :361-368