Recognizing a spatial extreme dependence structure: A deep learning approach

被引:7
作者
Ahmed, Manaf [1 ,2 ]
Maume-Deschamps, Veronique [2 ]
Ribereau, Pierre [2 ]
机构
[1] Univ Mosul, Dept Stat & Informat, Mosul, Iraq
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Camille Jordan ICJ, CNRS UMR 5208, Villeurbanne, France
关键词
convolutional neural networks; extremal dependence; extreme spatial processes; MULTIVARIATE; MODEL; FIELDS; MAXIMA; VALUES;
D O I
10.1002/env.2714
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the behavior of extreme environmental events is crucial for evaluating economic losses, assessing risks, and providing health care, among many other related aspects. In a spatial context, relevant for environmental events, the dependence structure is extremely important, influencing joint extreme events and extrapolating on them. Thus, recognizing or at least having preliminary information on the patterns of these dependence structures is a valuable knowledge for understanding extreme events. In this study, we address the question of automatic recognition of spatial asymptotic dependence versus asymptotic independence, using a convolutional neural network (CNN). We designed a CNN architecture as an efficient classifier of a dependence structure. Extremal dependence measures are used to train the CNN. We tested our methodology on simulated and real datasets: air temperature data at 2 m over Iraq and rainfall data along the east coast of Australia.
引用
收藏
页数:17
相关论文
共 40 条
[1]   Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool [J].
Abu-Awwad, A. ;
Maume-Deschamps, V ;
Ribereau, P. .
TEST, 2020, 29 (02) :479-522
[2]  
Ahmed M., 2017, ARXIV171008120
[3]  
[Anonymous], 2013, MODELLING EXTREMAL E
[4]   A flexible dependence model for spatial extremes [J].
Bacro, Jean-Noel ;
Gaetan, Carlo ;
Toulemonde, Gwladys .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 172 :36-52
[5]   The multivariate Gaussian tail model: an application to oceanographic data [J].
Bortot, P ;
Coles, S ;
Tawn, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2000, 49 :31-49
[6]   EXTREME VALUES OF INDEPENDENT STOCHASTIC-PROCESSES [J].
BROWN, BM ;
RESNICK, SI .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :732-739
[7]  
Caterini AL, 2018, SPRINGERBRIEF COMPUT, DOI 10.1007/978-3-319-75304-1
[8]   Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data [J].
Chattopadhyay, Ashesh ;
Hassanzadeh, Pedram ;
Pasha, Saba .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]  
Chichester UK., 1999, EXTREMES, V2, P339, DOI [10.1023/A:1009963131610, DOI 10.1023/A:1009963131610]
[10]   Models and inference for uncertainty in extremal dependence [J].
Coles, S ;
Pauli, F .
BIOMETRIKA, 2002, 89 (01) :183-196