Soliton Solutions of Cubic-Quintic Nonlinear Schrodinger and Variant Boussinesq Equations by the First Integral Method

被引:15
作者
Seadawy, Aly [1 ,2 ]
Sayed, A. [2 ]
机构
[1] Taibah Univ, Fac Sci, Al Madinah Al Munawara, Saudi Arabia
[2] Beni Suef Univ, Math Dept, Fac Sci, Bani Suwayf, Egypt
关键词
Cubic-quintic nonlinear Schrodinger equation; Variant Boussinesq equation; The first integral method; Exact solutions; ZAKHAROV-KUZNETSOV EQUATION; MADELUNG FLUID DESCRIPTION; ION-ACOUSTIC-WAVES; STABILITY ANALYSIS; INSTABILITIES; DYNAMICS;
D O I
10.2298/FIL1713199S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The cubic-quintic nonlinear Schrodinger equation emerges in models of light propagation in diverse optical media, such as non-Kerr crystals, chalcogenide glasses, organic materials, colloids, dye solutions and ferroelectrics. The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. By using the extended first integral method, we construct exact solutions of a fourth-order dispersive cubic-quintic nonlinear Schrodinger equation and the variant Boussinesq system. The stability analysis for these solutions are discussed.
引用
收藏
页码:4199 / 4208
页数:10
相关论文
共 41 条
[1]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[2]   T-MATRIX APPROACH TO THE NONLINEAR SUSCEPTIBILITIES OF HETEROGENEOUS MEDIA [J].
AGARWAL, GS ;
GUPTA, SD .
PHYSICAL REVIEW A, 1988, 38 (11) :5678-5687
[3]  
Agrawal G. P., 2019, Nonlinear Fiber Optics, V6th
[4]  
[Anonymous], 1986, REAL COMPLEX ANAL
[5]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[6]   Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses [J].
Boudebs, G ;
Cherukulappurath, S ;
Leblond, H ;
Troles, J ;
Smektala, F ;
Sanchez, F .
OPTICS COMMUNICATIONS, 2003, 219 (1-6) :427-433
[7]  
DAUXOIS T, 2005, PHYS SOLITONS
[8]   SEPARABILITY PROPERTIES OF ALMOST-DISJOINT FAMILIES OF SETS [J].
ERDOS, P ;
SHELAH, S .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 12 (02) :207-&
[9]   L-FUZZY SETS [J].
GOGUEN, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 18 (01) :145-&
[10]  
Hasegawa A., 1995, Solitons in Optical Communications