Self-folding micropatterned polymeric containers

被引:136
|
作者
Azam, Anum [1 ]
Laflin, Kate E. [1 ]
Jamal, Mustapha [1 ]
Fernandes, Rohan [1 ]
Gracias, David H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
关键词
Cell encapsulation therapy; Tissue engineering; Drug delivery; Microcontainers; Lithography; Bio-MEMS; POLYCAPROLACTONE; FABRICATION; DRIVEN; MICROCONTAINERS; SCAFFOLDS; DELIVERY; MOBILE;
D O I
10.1007/s10544-010-9470-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [21] Self-folding with shape memory composites
    Felton, Samuel M.
    Tolley, Michael T.
    Shin, ByungHyun
    Onal, Cagdas D.
    Demaine, Erik D.
    Rus, Daniela
    Wood, Robert J.
    SOFT MATTER, 2013, 9 (32) : 7688 - 7694
  • [22] A method for building self-folding machines
    Felton, S.
    Tolley, M.
    Demaine, E.
    Rus, D.
    Wood, R.
    SCIENCE, 2014, 345 (6197) : 644 - 646
  • [23] Lattice model for self-folding at the microscale
    Simoes, T. S. A. N.
    Melo, H. P. M.
    Araujo, N. A. M.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (04):
  • [24] Extreme Mechanics: Self-Folding Origami
    Santangelo, Christian D.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 8, 2017, 8 : 165 - 183
  • [25] Self-Folding Origami Microstrip Antennas
    Hayes, Gerard J.
    Liu, Ying
    Genzer, Jan
    Lazzi, Gianluca
    Dickey, Michael D.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (10) : 5416 - 5419
  • [26] A flexible self-folding receptor for coronene
    Lozano, David
    Alvarez-Yebra, Ruben
    Lopez-Coll, Ricard
    Lledo, Agusti
    CHEMICAL SCIENCE, 2019, 10 (44) : 10351 - 10355
  • [27] Sequential self-folding of polymer sheets
    Liu, Ying
    Shaw, Brandi
    Dickey, Michael D.
    Genzer, Jan
    SCIENCE ADVANCES, 2017, 3 (03):
  • [28] Self-Folding Single Cell Grippers
    Malachowski, Kate
    Jamal, Mustapha
    Jin, Qianru
    Polat, Beril
    Morris, Christopher J.
    Gracias, David H.
    NANO LETTERS, 2014, 14 (07) : 4164 - 4170
  • [29] Self-Folding and Unfolding of Carbon Nanotubes
    Buehler, MJ
    Kong, Y
    Gao, HJ
    Huang, YG
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 3 - 10
  • [30] Self-folding CNTs cause a racket
    Palmer, D. Jason
    MATERIALS TODAY, 2007, 10 (04) : 9 - 9