Gas Diffusion in Fractal Porous Media

被引:40
|
作者
Cao, Liyong [1 ]
He, Rong [1 ]
机构
[1] Tsinghua Univ, Dept Thermal Engn, Beijing 10084, Peoples R China
基金
中国国家自然科学基金;
关键词
Char pores; Diffusion; Fractal; TEMPERATURE COMBUSTION-RATE; COAL CHAR; COMPUTER-SIMULATION; ANOMALOUS DIFFUSION; OXIDATION BEHAVIOR; PORES; DIMENSIONS; EVOLUTION; CLUSTERS;
D O I
10.1080/00102200903341553
中图分类号
O414.1 [热力学];
学科分类号
摘要
Gas diffusion in char pores or other fractal pores is anomalous diffusion that does not follow Fick's diffusion law. The authors studied gas diffusion in fractal porous media by simulating molecular movements in porous models. Through analyzing numerical results, gas diffusion equations in fractal pores have been presented. The effects of geometrical structures on pore diffusion can be described by three parameters: porosity, specific surface area, and fractal dimension. With these three parameters, the diffusion coefficient can be calculated. The steady-state diffusion equation is quantitatively determined so that it can be potentially used in modeling char combustion or other practical applications.
引用
收藏
页码:822 / 841
页数:20
相关论文
共 50 条
  • [31] Network analysis of ternary gas diffusion in porous media
    Xin, F.
    Han, S.
    Yin, X.H.
    Liao, H.
    Li, S.F.
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2001, 52 (03): : 236 - 240
  • [32] FRACTAL ANALYSIS OF SURFACE ROUGHNESS EFFECTS ON GAS DIFFUSION IN POROUS NANOFIBERS
    Zheng, Qian
    Wang, Huili
    Jiang, Jian
    Xu, Chao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [33] A fractal approach on modeling gas hydrate phase equilibria in porous media
    Li, Sheng-Li
    Ma, Qing-Lan
    Sun, Chang-Yu
    Chen, Li-Tao
    Liu, Bei
    Feng, Xiu-Jun
    Wang, Xiao-Qin
    Chen, Guang-Jin
    FLUID PHASE EQUILIBRIA, 2013, 356 : 277 - 283
  • [34] Fractal Dimension of a Gas-Liquid Interface in Porous Media.
    Mahe, Michel J.
    Jacquin, Christian G.
    Adler, Pierre M.
    Hydrogeologie/Hydrogeology, 1986, (02): : 175 - 181
  • [35] RESEARCH ON THE EFFECT OF SURFACE ROUGHNESS ON GAS DIFFUSION COEFFICIENT OF POROUS MEDIA EMBEDDED WITH A FRACTAL-LIKE TREE NETWORK
    Zheng, Qian
    Wang, Huili
    Guo, Xiuya
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [36] On turbulence in fractal porous media
    Ostoja-Starzewski, Martin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (06): : 1111 - 1117
  • [37] On fractal theory for porous media
    Park, Y
    JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (5-6) : 987 - 998
  • [38] DERIVATION OF FRACTIONAL DIFFERENTIAL EQUATIONS FOR MODELING DIFFUSION IN POROUS MEDIA OF FRACTAL GEOMETRY
    Fomin, Sergei
    Chugunov, Vladimir
    Hashida, Toshiyuki
    IMECE 2008: HEAT TRANSFER, FLUID FLOWS, AND THERMAL SYSTEMS, VOL 10, PTS A-C, 2009, : 1041 - 1046
  • [39] On turbulence in fractal porous media
    Martin Ostoja-Starzewski
    Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 1111 - 1117
  • [40] Transports in fractal porous media
    Adler, PM
    JOURNAL OF HYDROLOGY, 1996, 187 (1-2) : 195 - 213