Stability results for scattered-data interpolation on Euclidean spheres

被引:24
作者
Narcowich, FJ [1 ]
Sivakumar, N [1 ]
Ward, JD [1 ]
机构
[1] Texas A&M Univ, Dept Math, Ctr Approximat Theory, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
D O I
10.1023/A:1018996230401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S-m denote the unit sphere in Rm+1 and d(m) the geodesic distance in S-m. A spherical-basis function approximant is a function of the form s(x) = Sigma(j=1)(M) a(j)phi(d(m)(x, x(j))), x is an element of S-m, where (a(j))(1)(M) are real constants, phi : [0, pi] --> R is a fixed function, and (x(j))(1)(M) is a set of distinct points in S-m. It is known that if phi is a strictly positive definite function in S-m, then the interpolation matrix (phi(d(m)(x(j), x(k))))(j,k=1)(M) is positive definite, hence invertible, for every choice of distinct points (x(j))(1)(M) and every positive integer M. The paper studies a salient subclass of such functions phi, and provides stability estimates for the associated interpolation matrices.
引用
收藏
页码:137 / 163
页数:27
相关论文
共 33 条
[1]   ON THE SENSITIVITY OF RADIAL BASIS INTERPOLATION TO MINIMAL DATA SEPARATION DISTANCE [J].
BALL, K ;
SIVAKUMAR, N ;
WARD, JD .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (04) :401-426
[2]   NORM ESTIMATES FOR INVERSES OF TOEPLITZ DISTANCE MATRICES [J].
BAXTER, BJC .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (02) :222-242
[3]  
Buhmann M.D., 1993, Multivariate Approximation: from CAGD to Wavelets, P35
[4]  
CHENEY EW, 1996, APPROXIMATION THEORY, V8, P145
[5]  
Dyn N., 1989, APPROXIMATION THEORY, VVI, P211, DOI DOI 10.1007/BF01203417
[6]  
DYN N, IN PRESS CONSTR APPR
[7]  
FASSHAUER GE, SCATTERED DATA INTER
[8]  
FASSHAUER GE, HERMITE INTERPOLATIO
[9]  
FASSHAUER GE, DENSITY CERTAIN CLAS
[10]   Some trigonometrical inequalities with applications to the theory of series [J].
Ingham, AE .
MATHEMATISCHE ZEITSCHRIFT, 1936, 41 :367-379