Chirp-free bright optical solitons and conservation laws for complex Ginzburg-Landau equation with three nonlinear forms

被引:52
|
作者
Biswas, Anjan [1 ,2 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
来源
OPTIK | 2018年 / 174卷
关键词
Solitons; Traveling waves; Semi-inverse variation;
D O I
10.1016/j.ijleo.2018.08.063
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains chirp-free bright optical soliton solutions to the complex Ginzburg-Landau equation by traveling wave hypothesis and semi-inverse variational principle. Three forms of nonlinearity are associated with the model. They are quadratic-cubic form, parabolic law and dual-power law. The corresponding conservation laws are also included.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [31] Chirp-free bright optical soliton perturbation with Chen-Lee-Liu equation by traveling wave hypothesis and semi-inverse variational principle
    Biswas, Anjan
    OPTIK, 2018, 172 : 772 - 776
  • [32] Pure-Cubic Optical Soliton Perturbation with Complex Ginzburg-Landau Equation Having a Dozen Nonlinear Refractive Index Structures
    Zayed, Elsayed M. E.
    Alngar, Mohamed E. M.
    Biswas, Anjan
    Ekici, Mehmet
    Khan, Salam
    Alshomrani, Ali Saleh
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (05) : 481 - 544
  • [33] Analysis of lump solutions and modulation instability to fractional complex Ginzburg-Landau equation arise in optical fibers
    Akram, Sonia
    Ahmad, Jamshad
    Shafqat-Ur-Rehman
    Alkarni, Shalan
    Shah, Nehad Ali
    RESULTS IN PHYSICS, 2023, 53
  • [34] Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method
    Arnous, Ahmed H.
    Biswas, Anjan
    Yildirim, Yakup
    Zhou, Qin
    Liu, Wenjun
    Alshomrani, Ali S.
    Alshehri, Hashim M.
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [35] Optical solitons, conservation laws and modulation instability analysis for the modified nonlinear Schrodinger's equation for Davydov solitons
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    Baleanu, Dumitru
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2018, 32 (07) : 858 - 873
  • [36] Optical solitons and conservation laws for driven nonlinear Schrodinger's equation with linear attenuation and detuning
    Masemola, P.
    Kara, A. H.
    Biswas, Anjan
    OPTICS AND LASER TECHNOLOGY, 2013, 45 : 402 - 405
  • [37] Light bullets in three-dimensional complex Ginzburg-Landau equation with modulated Kummer-Gauss photonic lattice
    Xu, Si-Liu
    Belic, Milivoj R.
    EPL, 2014, 108 (03)
  • [38] Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg-Landau Equation by Semi-Inverse Variation
    Biswas, Anjan
    Berkemeyer, Trevor
    Khan, Salam
    Moraru, Luminita
    Yildirim, Yakup
    Alshehri, Hashim M.
    MATHEMATICS, 2022, 10 (06)
  • [39] Sequel to "cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method"
    Arnous, Ahmed H.
    Biswas, Anjan
    Kara, Abdul H.
    Milovic, Daniela
    Yildirim, Yakup
    Alshehri, Hashim M.
    IET OPTOELECTRONICS, 2022, 16 (04) : 149 - 159
  • [40] Conservation laws, modulation instability and solitons interactions for a nonlinear Schrodinger equation with the sextic operators in an optical fiber
    Lan, Zhong-Zhou
    Guo, Bo-Ling
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (09)