Quasi-convex functions and Hadamard's inequality

被引:83
作者
Dragomir, SS
Pearce, CEM
机构
[1] Univ Transkei, Dept Math Appl, ZA-5100 Umtata, South Africa
[2] Univ Adelaide, Dept Appl Math, Adelaide, SA 5005, Australia
关键词
D O I
10.1017/S0004972700031786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some extensions of quasi-convexity appearing in the literature are explored and relations found between them. Hadamard's inequality is connected tenaciously with convexity and versions of it are shown to hold in our setting. Our theorems extend and unify a number of known results. In particular, we derive a generalised Kenyon-Klee theorem.
引用
收藏
页码:377 / 385
页数:9
相关论文
共 12 条
[1]  
[Anonymous], ANAL NUM THER APPROX
[2]  
Dragomir S. S., 1995, Soochow J Math, V21, P335
[3]  
Dragomir S.S., 1992, Mat. Balk, V6, P215, DOI [10.1017/S0004972700031786, DOI 10.1017/S0004972700031786]
[4]   2 MAPPINGS IN CONNECTION TO HADAMARDS INEQUALITIES [J].
DRAGOMIR, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (01) :49-56
[6]  
Hardy GH., 1934, INEQUALITIES
[7]  
Hewitt E, 1965, Real and Abstract Analysis
[8]  
Kenyon H., 1956, AM MATH MONTHLY, V63, P107
[9]  
Klee V.L., 1956, AM MATH MONTHLY, V63, P106
[10]   7 KINDS OF CONVEXITY [J].
PONSTEIN, J .
SIAM REVIEW, 1967, 9 (01) :115-&