In the Canadian prairies, current recommendations allow growing of canola or pea once every 4 years on a particular field to effectively mange diseases, insects, and weeds, but producers are interested in increasing frequency of these crops to optimize economic returns. A 4-year (from 1999 and 2002) field experiment, with treatments consisting of rotations of monoculture canola and pea to rotations that contained these crops every 2, 3, and 4 years with wheat and flax, was conducted on a Black Chernozem (Udic Boroll) silty clay at Melfort, Saskatchewan, to determine the impact of frequency of broad-leaf crops canola and pea in various crop rotations on accumulation and distribution of nitrate nitrogen (N) and extractable phosphorus (P) in the soil profile after 4 years. Two cultivars of canola, an herbicide-tolerant blacklegresistant variety (hybrid) and a conventional (not herbicide tolerant) open-pollinated, blackleg-susceptible variety (OP), were included. Mean effects of crop rotation or rotation length on soil nitrate N were not significant, though the amount of soil nitrate N in different soil layers tended to be greatest with monocultures and least in the 4-year rotation with flax. Effects of crop phase (i.e., individual crops that make up the rotation) x crop rotation interactions on soil nitrate N were significant for all layers in the soil profile. The amounts of nitrate N in soil after canola, especially hybrid canola, were lowest in most crop rotations, suggesting the importance of canola in minimizing downward movement of nitrate N in the soil profile. Soil extractable P in the 0- to 15-cm layer was least with monocultures and greatest in the 4-year rotation with flax. There was a significant effect of crop phase on soil extractable P, but soil P levels varied with crop phase in different rotations. In conclusion, residual nitrate N in soil can be reduced by extending crop rotations and using high-yielding disease-resistant canola cultivars, most likely by improving crop yields.