Realisability of p-stable fusion systems

被引:2
作者
Hethelyi, L. [1 ]
Szoke, M. [2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Algebra, Budapest, Hungary
[2] Obuda Univ, Inst Appl Math, John von Neumann Fac Informat, Budapest, Hungary
关键词
Saturated fusion systems; Soluble fusion systems; p-stability; Realisable fusion systems; Characteristic p-functors; SUBGROUP;
D O I
10.1016/j.jalgebra.2018.11.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to investigate p-stable fusion systems, where p is an odd prime. We examine realisable fusion systems and prove a generalisation of a result of G. Glauberman. Then we prove that p-stability is determined by the normaliser systems of centric radical subgroups. Finally, we prove that all p-stable fusion systems are realisable provided there exists a stable p-functor. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 12 条
  • [1] Aschbacher M., 2011, LMS LECT NOTES, V391
  • [2] The Generalized Fitting Subsystem of a Fusion System
    Aschbacher, Michael
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 209 (986) : 1 - +
  • [3] Subgroup families controlling p-local finite groups
    Broto, C
    Castellana, N
    Grodal, J
    Levi, R
    Oliver, B
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 325 - 354
  • [4] Craven D. A., 2011, CAMBRIDGE STUD ADV M, V131
  • [5] Gagen T.M., 1976, LOND MATH SOC LECT N, V16
  • [6] A CHARACTERISTIC SUBGROUP OF A P-STABLE GROUP
    GLAUBERMAN, G
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05): : 1101 - +
  • [7] Glauberman G., 1971, P INSTR C OXF 1969, P1
  • [8] GORENSTEIN D, 1964, J ALGEBRA, V1, P168
  • [9] On p-stability in groups and fusion systems
    Hethelyi, L.
    Szoke, M.
    Zalesski, A. E.
    [J]. JOURNAL OF ALGEBRA, 2017, 492 : 253 - 297
  • [10] Huppert B., 1982, GRUNDLEHREN MATH WIS, V243