The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity

被引:61
作者
Peiter, E [1 ]
Fischer, M [1 ]
Sidaway, K [1 ]
Roberts, SK [1 ]
Sanders, D [1 ]
机构
[1] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
calcium; channel; cold stress; iron toxicity; Saccharomyces cerevisiae;
D O I
10.1016/j.febslet.2005.09.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cch1p and Mid1p are components of a high-affinity Ca2+-permeable channel in the yeast plasma membrane. Here, we show that growth of mutants in the Cch1pMid1p channel is markedly hypersensitive to low temperature and to high iron concentration in the medium. Both phenotypes were suppressed by high Ca2+ concentration. Iron stress elicited an increased Ca2+ influx into both wild type and cch1 Delta mid Delta yeast. Inhibition of calcineurin strongly depressed growth of iron-stressed wild type yeast, indicating that calcineurin is a downstream element of the iron stress response. Iron hypersensitivity of the cch1 Delta mid1 Delta mutant was not associated with an increased iron uptake. An involvement of oxidative stress in the iron-hypersensitive phenotype was indicated by the findings that the antioxidants tocopheryl acetate and (ethyl)glutathione improved growth and viability of the iron-stressed mutant. Further, the degree of glutathione oxidation was increased in the presence of iron. The results indicate that iron stress leads to an increased oxidative poise and that Cch1pMid1p is essential to tolerate this condition. (c) 2005 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:5697 / 5703
页数:7
相关论文
共 36 条
[1]  
ANDERSON ME, 1985, METHOD ENZYMOL, V113, P548
[2]  
ANDERSON ME, 1994, METHOD ENZYMOL, V234, P492
[3]  
Anghileri LJ, 1998, INT J MOL MED, V1, P869
[4]   Metal toxicity in yeasts and the role of oxidative stress [J].
Avery, SV .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 49, 2001, 49 :111-142
[5]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[6]   Yeast respond to hypotonic shock with a calcium pulse [J].
Batiza, AF ;
Schulz, T ;
Masson, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (38) :23357-23362
[7]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[8]   Essential role of calcineurin in response to endoplasmic reticulum stress [J].
Bonilla, M ;
Nastase, KK ;
Cunningham, KW .
EMBO JOURNAL, 2002, 21 (10) :2343-2353
[9]  
CHENG Y, 1994, J NEUROCHEM, V63, P895
[10]   CALCIUM SIGNALING [J].
CLAPHAM, DE .
CELL, 1995, 80 (02) :259-268