Ideals of quasi-symmetric functions and super-covariant polynomials for Sn

被引:12
作者
Aval, JC
Bergeron, F
Bergeron, N [1 ]
机构
[1] Univ York, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[2] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[3] Univ Bordeaux 1, Lab A2X, F-33405 Talence, France
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0001-8708(03)00068-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to study the quotient ring R-n of the ring Q[x(1), . . . x(n)] over the ideal J(n) generated by non-constant homogeneous quasi-symmetric functions. This article is a sequel of Aval and Bergeron (Proc. Amer. Math. Soc., to appear), in which we investigated the case of infinitely many variables. We prove here that the dimension of R-n is given by C-n, the nth Catalan number. This is also the dimension of the space SHn of super-covariant polynomials, defined as the orthogonal complement of J(n) with respect to a given scalar product. We construct a basis for R-n whose elements are naturally indexed by Dyck paths. This allows us to understand the Hilbert series of SHn in terms of number of Dyck paths with a given number of factors. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 16 条
[1]   Catalan paths and quasi-symmetric functions [J].
Aval, JC ;
Bergeron, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1053-1062
[2]   Multiple left regular representations generated by alternants [J].
Bergeron, F ;
Garsia, A ;
Tesler, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :49-83
[3]   Lattice diagram polynomials and extended Pieri Rules [J].
Bergeron, F ;
Bergeron, N ;
Garsia, AM ;
Haiman, M ;
Tesler, G .
ADVANCES IN MATHEMATICS, 1999, 142 (02) :244-334
[4]   Noncommutative Pieri operators on posets [J].
Bergeron, N ;
Mykytiuk, S ;
Sottile, F ;
van Willigenburg, S .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :84-110
[6]   SYMMETRIC FUNCTIONS, CONJUGACY CLASSES AND THE FLAG VARIETY [J].
DECONCINI, C ;
PROCESI, C .
INVENTIONES MATHEMATICAE, 1981, 64 (02) :203-219
[7]   A GRADED REPRESENTATION MODEL FOR MACDONALDS POLYNOMIALS [J].
GARSIA, AM ;
HAIMAN, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3607-3610
[8]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[9]  
Gessel I., 1984, Contemporary Mathematics, V34, P289
[10]   Hilbert schemes, polygraphs and the Macdonald positivity conjecture [J].
Haiman, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :941-1006