Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements

被引:41
作者
Girault, Vivette [1 ]
Sun, Shuyu [2 ]
Wheeler, Mary F. [2 ]
Yotov, Ivan [3 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75230 Paris 05, France
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
discontinuous Galerkin; mixed finite element; flow in porous media; mortar finite element; interface problem;
D O I
10.1137/060671620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discontinuous Galerkin (DG) and mixed finite element (MFE) methods are two popular methods that possess local mass conservation. In this paper we investigate DG-DG and DG-MFE domain decomposition couplings using mortar finite elements to impose weak continuity of fluxes and pressures on the interface. The subdomain grids need not match, and the mortar grid may be much coarser, giving a two-scale method. Convergence results in terms of the. ne subdomain scale h and the coarse mortar scale H are established for both types of couplings. In addition, a nonoverlapping parallel domain decomposition algorithm is developed, which reduces the coupled system to an interface mortar problem. The properties of the interface operator are analyzed.
引用
收藏
页码:949 / 979
页数:31
相关论文
共 47 条
[1]  
ABBOGAST T, 1997, SIAM J NUMER ANAL, V34, P828
[2]   Iterative substructuring preconditioners for mortar element methods in two dimensions [J].
Achdou, Y ;
Maday, Y ;
Widlund, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :551-580
[3]   SUBSTRUCTURING PRECONDITIONERS FOR THE Q(1) MORTAR ELEMENT METHOD [J].
ACHDOU, Y ;
KUZNETSOV, YA ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1995, 71 (04) :419-449
[4]   The local discontinuous Galerkin method for contaminant transport [J].
Aizinger, V ;
Dawson, C ;
Cockburn, B ;
Castillo, P .
ADVANCES IN WATER RESOURCES, 2000, 24 (01) :73-87
[5]  
[Anonymous], 1972, NON HOMOGENEOUS BOUN
[6]   Mixed finite element methods on nonmatching multiblock grids [J].
Arbogast, T ;
Cowsar, LC ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1295-1315
[7]   A multiscale mortar mixed finite element method [J].
Arbogast, Todd ;
Pencheva, Gergina ;
Wheeler, Mary F. ;
Yotov, Ivan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (01) :319-346
[8]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[9]  
ARNOLD DN, 1985, RAIRO-MATH MODEL NUM, V19, P7
[10]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279