Max-SINR ISI/ICI-Shaping multicarrier communication over the doubly dispersive channel

被引:63
作者
Das, Sibasish [1 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
equalization; doubly dispersive channel; intercarrier interference (ICI); inter-symbol interference (ISI); modulation; multicarrier; multipath; pulse-shape; time-varying channel; turbo-equalization; wireless communications;
D O I
10.1109/TSP.2007.901660
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For communication over doubly dispersive channels, we consider the design of multicarrier modulation (MCM) schemes based on time-frequency shifts of prototype pulses. We consider the case where the receiver knows the channel state and the transmitter knows the channel statistics (e.g., delay spread and Doppler spread) but not the channel state. Previous work has examined MCM pulses designed for suppression of inter-symbol/inter-carrier interference (ISI/ICI) subject to orthogonal or biorthogonal constraints. In doubly dispersive channels, however, complete suppression of ISI/ICI is impossible, and the ISI/ICI pattern generated by these (bi)orthogonal schemes can be difficult to equalize, especially when operating at high bandwidth efficiency. We propose a different approach to MCM pulse design, whereby a limited expanse of ISI/ICI is tolerated in modulation/demodulation and treated near-optimally by a downstream equalizer. Specifically, we propose MCM pulse designs that maximize a signal-to-interference-plus-noise ratio (SINR) which suppresses ISI/ICI outside a target pattern. In addition, we propose two low-complexity turbo equalizers, based on minimum mean-squared error and maximum likelihood criteria, respectively, that leverage the structure of the target ISI/ICI pattern. The resulting system exhibits an excellent combination of low complexity, low bit-error rate, and high spectral efficiency.
引用
收藏
页码:5782 / 5795
页数:14
相关论文
共 35 条
[1]   Closest point search in lattices [J].
Agrell, E ;
Eriksson, T ;
Vardy, A ;
Zeger, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2201-2214
[2]  
[Anonymous], 1993, Ten Lectures of Wavelets
[3]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[4]  
Bolcskei H, 2003, APPL NUM HARM ANAL, P321
[5]   Bounding performance and suppressing intercarrier interference in wireless mobile OFDM [J].
Cai, XD ;
Giannakis, GB .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (12) :2047-2056
[7]  
DAS S, 2004, THESIS OHIO STATE U
[8]  
DAS S, 2007, THESIS OHIO STATE U
[9]   ITERATIVE CORRECTION OF INTERSYMBOL INTERFERENCE - TURBO-EQUALIZATION [J].
DOUILLARD, C ;
JEZEQUEL, M ;
BERROU, C ;
PICART, A ;
DIDIER, P ;
GLAVIEUX, A .
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 1995, 6 (05) :507-511
[10]   A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission [J].
Haas R. ;
Belfiore J.-C. .
Wireless Personal Communications, 1997, 5 (1) :1-18