GAUGE THEORY AND TWO LEVEL SYSTEMS

被引:15
|
作者
Bruno, A. [1 ,2 ,4 ]
Capolupo, A. [3 ]
Kak, S. [5 ]
Raimondo, G. [1 ,2 ]
Vitiello, G. [3 ,4 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy
[2] Univ Salerno, Ist Nazl Fis Nucl, I-84100 Salerno, Italy
[3] Univ Salerno, Dipartimento Matemat & Informat, I-84100 Salerno, Italy
[4] Ist Nazl Fis Nucl, Grp Collegato Salerno, I-84100 Salerno, Italy
[5] Oklahoma State Univ, Dept Comp Sci, Stillwater, OK 74078 USA
来源
MODERN PHYSICS LETTERS B | 2011年 / 25卷 / 20期
关键词
Gauge theory; qubit; Berry-like geometric phase; free energy; birefringence medium; QUANTUM-FIELD THEORY; NEUTRINO OSCILLATIONS;
D O I
10.1142/S021798491102698X
中图分类号
O59 [应用物理学];
学科分类号
摘要
We consider the time evolution of a two level system (a two level atom or a qubit) and show that it is characterized by a local (in time) gauge in variant evolution equation. The covariant derivative operator is constructed and related to the free energy. We show that the gauge invariant characterization of the time evolution of the two level system is analogous to the birefringence phenomenon in optics. The relation with Berry-like and Anandan-Aharonov phase is pointed out. Finally, we discuss entropy, environment effects and the distance in projective Hilbert space between two level states in their evolution.
引用
收藏
页码:1661 / 1670
页数:10
相关论文
共 50 条
  • [41] FEYNMAN PERTURBATION THEORY FOR GAUGE THEORY ON TRANSVERSE LATTICE
    Karnevskiy, M. S.
    Paston, S. A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (18-19): : 3621 - 3640
  • [42] Perturbative Gauge Theory as a String Theory in Twistor Space
    Edward Witten
    Communications in Mathematical Physics, 2004, 252 : 189 - 258
  • [43] Dyonic String-Like Solution in a Non-Abelian Gauge Theory with Two Potentials
    Tripathi, Buddhi Vallabh
    Nandan, Hemwati
    Purohit, K. D.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (04) : 2157 - 2161
  • [44] Duality in supersymmetric SU(N-c) gauge theory with two adjoint chiral superfields
    Brodie, J
    NUCLEAR PHYSICS B, 1996, 478 (1-2) : 123 - 140
  • [45] SL(2,C) Gauge Theory of Gravitation and the Quantization of the Gravitational Field
    Moshe Carmeli
    Shimon Malin
    International Journal of Theoretical Physics, 1998, 37 : 2615 - 2620
  • [46] SL(2,C) gauge theory of gravitation and the quantization of the gravitational field
    Carmeli, M
    Malin, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (10) : 2615 - 2620
  • [47] Gauge Theory Solitons on the Noncommutative Cylinder
    S. V. Demidov
    S. L. Dubovsky
    V. A. Rubakov
    S. M. Sibiryakov
    Theoretical and Mathematical Physics, 2004, 138 : 269 - 283
  • [48] Gromov-Witten gauge theory
    Frenkel, Edward
    Teleman, Constantin
    Tolland, A. J.
    ADVANCES IN MATHEMATICS, 2016, 288 : 201 - 239
  • [49] Teleparallel Gravity as a Higher Gauge Theory
    Baez, John C.
    Wise, Derek K.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 153 - 186
  • [50] Quantum Deformation of Lattice Gauge Theory
    D.V. Boulatov
    Communications in Mathematical Physics, 1997, 186 : 295 - 322