Generalized skew-elliptical distributions and their quadratic forms

被引:121
作者
Genton, MG [1 ]
Loperfido, NMR
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[2] Univ Urbino, Fac Econ, Inst Sci Econ, I-61029 Urbino, PU, Italy
关键词
elliptical distribution; invariance; kurtosis; selection model; skewness; weighted distribution;
D O I
10.1007/BF02507031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces generalized skew-elliptical distributions (GSE), which include the multivariate skew-normal, skew-t, skew-Cauchy, and skew-elliptical distributions as special cases. GSE are weighted elliptical distributions but the distribution of any even function in GSE random vectors does not depend on the weight function. In particular, this holds for quadratic forms in GSE random vectors. This property is beneficial for inference from non-random samples. We illustrate the latter point on a data set of Australian athletes.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 1979, Multivariate analysis
[2]   The skew-Cauchy distribution [J].
Arnold, BC ;
Beaver, RJ .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (03) :285-290
[3]  
*AUSTR BUR STAT, 1995, HOW AUSTR MEAS UP
[4]   Statistical applications of the multivariate skew normal distribution [J].
Azzalini, A ;
Capitanio, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :579-602
[5]   The multivariate skew-normal distribution [J].
Azzalini, A ;
DallaValle, A .
BIOMETRIKA, 1996, 83 (04) :715-726
[6]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[7]  
Basu D., 1983, SANKHYA A, V45, P324
[8]  
BAYARRI MJ, 1992, BAYESIAN STAT, V4, P17
[9]   A general class of multivariate skew-elliptical distributions [J].
Branco, MD ;
Dey, DK .
JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) :99-113
[10]  
Cook R.D., 1994, INTRO REGRESSION GRA